Sharp Lr asymptotics of the small solutions to the nonlinear Schrodinger equations

被引:6
|
作者
Kita, N [1 ]
机构
[1] Kyushu Univ, Grad Sch Math, Higashi Ku, Fukuoka 8128581, Japan
关键词
nonlinear Schrodinger equation; short-range case; nonlinear scattering;
D O I
10.1016/S0362-546X(02)00265-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the large time behavior of the small solution to the nonlinear Schrodinger equation with power type nonlinearity. If the power is large enough, then it is well known that the nonlinear solution asymptotically behaves like a linear solution as t --> +/-infinity (see e.g. (J. Funct. Anal. 32 (1979) 1; J. Math. Pures Appl. 64 (1985) 363)). Our concern at the present work is to determine the sharp decay rate of the difference between the nonlinear solution and the linear solution in L-r (2 less than or equal to r less than or equal to infinity) spaces. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1365 / 1377
页数:13
相关论文
共 50 条
  • [31] GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS
    Ye Yaojun
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 18 (02): : 185 - 192
  • [32] Spiraling solutions of nonlinear Schrodinger equations
    Agudelo, Oscar
    Kuebler, Joel
    Weth, Tobias
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (03) : 592 - 625
  • [33] On the small-time asymptotics of solutions of linear and nonlinear stochastic differential equations
    Zhang, TS
    NONLINEAR THEORY OF GENERALIZED FUNCTIONS, 1999, 401 : 345 - 351
  • [34] On decay of solutions to nonlinear Schrodinger equations
    Pankov, Alexander
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) : 2565 - 2570
  • [35] Asymptotics of families of solutions of nonlinear difference equations
    van den Berg, Imme P.
    JOURNAL OF LOGIC AND ANALYSIS, 2007, 1 : 153 - 185
  • [36] On asymptotics of solutions to the nonlinear dissipative systems of equations
    Kaikina, E.I.
    Naumkin, P.I.
    Shishmarev, I.A.
    Doklady Akademii Nauk, 2003, 391 (03) : 298 - 303
  • [37] Asymptotics for nonlinear evolution equations with small dissipation
    Kaikina, EI
    Naumkin, PI
    Shishmarev, IA
    DIFFERENTIAL EQUATIONS, 2003, 39 (05) : 658 - 673
  • [38] Infinite Sharp Conditions by Nehari Manifolds for Nonlinear Schrodinger Equations
    Lian, Wei
    Shen, Jihong
    Xu, Runzhang
    Yang, Yanbing
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1865 - 1886
  • [39] Asymptotics for Nonlinear Evolution Equations with Small Dissipation
    E. I. Kaikina
    P. I. Naumkin
    I. A. Shishmarev
    Differential Equations, 2003, 39 : 658 - 673
  • [40] Sharp weights in the Cauchy problem for nonlinear Schrodinger equations with potential
    Carles, Remi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 2087 - 2094