Infinite Sharp Conditions by Nehari Manifolds for Nonlinear Schrodinger Equations

被引:4
|
作者
Lian, Wei [1 ]
Shen, Jihong [2 ]
Xu, Runzhang [1 ,2 ]
Yang, Yanbing [2 ]
机构
[1] Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Nonlinear Schrodinger equation; Potential wells; Global existence; Blow up; Invariant set; CAUCHY-PROBLEM; ASYMPTOTIC-BEHAVIOR; GLOBAL EXISTENCE; POTENTIAL WELLS; DEEP-WATER; BLOW-UP; SOLITONS;
D O I
10.1007/s12220-019-00281-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem of nonlinear Schrodinger equation i phi t+Delta phi+|phi|p-1 phi=0. By constructing infinite Nehari manifolds with geometric features, we not only obtain infinite invariant sets of solutions, but also give infinite sharp conditions for global existence and finite time blow up of solutions.
引用
收藏
页码:1865 / 1886
页数:22
相关论文
共 50 条
  • [1] Infinite Sharp Conditions by Nehari Manifolds for Nonlinear Schrödinger Equations
    Wei Lian
    Jihong Shen
    Runzhang Xu
    Yanbing Yang
    The Journal of Geometric Analysis, 2020, 30 : 1865 - 1886
  • [2] Sharp conditions for a class of nonlinear Schrodinger equations
    Liu, Yang
    Liu, Jie
    Yu, Tao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (02) : 3721 - 3730
  • [3] Sharp Condition for Inhomogeneous Nonlinear Schrodinger Equations by Cross-Invariant Manifolds
    Lin, Qiang
    Yang, Chao
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (10)
  • [4] Nonlinear Schrodinger equations on compact manifolds
    Gérard, P
    EUROPEAN CONGRESS OF MATHEMATICS, 2005, : 121 - 139
  • [5] Sharp conditions of global existence for nonlinear Schrodinger and Klein-Gordon equations
    Zhang, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (02) : 191 - 207
  • [6] Silnikov manifolds in coupled nonlinear Schrodinger equations
    Haller, G
    Menon, G
    Rothos, VM
    PHYSICS LETTERS A, 1999, 263 (03) : 175 - 185
  • [7] Infinite hierarchy of nonlinear Schrodinger equations and their solutions
    Ankiewicz, A.
    Kedziora, D. J.
    Chowdury, A.
    Bandelow, U.
    Akhmediev, N.
    PHYSICAL REVIEW E, 2016, 93 (01)
  • [8] Blow up of solutions to the nonlinear Schrodinger equations on manifolds
    Ma, Li
    Zhao, Lin
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
  • [9] ON THE EXISTENCE OF INFINITE ENERGY SOLUTIONS FOR NONLINEAR SCHRODINGER EQUATIONS
    Braz E Silva, Pablo
    Ferreira, Lucas C. F.
    Villamizar-Roa, Elder J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (06) : 1977 - 1987
  • [10] Nonlinear Schrodinger equations near an infinite well potential
    Bartsch, Thomas
    Parnet, Mona
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (1-2) : 363 - 379