Nonlinear Schrodinger equation;
Potential wells;
Global existence;
Blow up;
Invariant set;
CAUCHY-PROBLEM;
ASYMPTOTIC-BEHAVIOR;
GLOBAL EXISTENCE;
POTENTIAL WELLS;
DEEP-WATER;
BLOW-UP;
SOLITONS;
D O I:
10.1007/s12220-019-00281-5
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the Cauchy problem of nonlinear Schrodinger equation i phi t+Delta phi+|phi|p-1 phi=0. By constructing infinite Nehari manifolds with geometric features, we not only obtain infinite invariant sets of solutions, but also give infinite sharp conditions for global existence and finite time blow up of solutions.
机构:
Sichuan Normal Univ, Sichuan Prov Key Lab Comp Software, Chengdu 610066, Peoples R ChinaSichuan Normal Univ, Sichuan Prov Key Lab Comp Software, Chengdu 610066, Peoples R China
Li, Xiaoguang
Wu, Yonghong
论文数: 0引用数: 0
h-index: 0
机构:
Curtin Univ Technol, Dept Math & Stat, Perth, WA 6845, AustraliaSichuan Normal Univ, Sichuan Prov Key Lab Comp Software, Chengdu 610066, Peoples R China
Wu, Yonghong
Lai, Shaoyong
论文数: 0引用数: 0
h-index: 0
机构:
SW Univ Finance & Econ, Dept Appl Math, Chengdu 610074, Peoples R ChinaSichuan Normal Univ, Sichuan Prov Key Lab Comp Software, Chengdu 610066, Peoples R China
机构:
Univ Paris 06, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
CNRS, Lab Jacques Louis Lions, BC 187,4 Pl Jussieu, F-75252 Paris 05, FranceUniv Paris 06, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
机构:
Univ Turin, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Turin, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Guida, Michela
Rolando, Sergio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Roberto Cozzi 53, I-20125 Milan, ItalyUniv Turin, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy