Nonlinear Schrodinger equation;
Potential wells;
Global existence;
Blow up;
Invariant set;
CAUCHY-PROBLEM;
ASYMPTOTIC-BEHAVIOR;
GLOBAL EXISTENCE;
POTENTIAL WELLS;
DEEP-WATER;
BLOW-UP;
SOLITONS;
D O I:
10.1007/s12220-019-00281-5
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the Cauchy problem of nonlinear Schrodinger equation i phi t+Delta phi+|phi|p-1 phi=0. By constructing infinite Nehari manifolds with geometric features, we not only obtain infinite invariant sets of solutions, but also give infinite sharp conditions for global existence and finite time blow up of solutions.
机构:
Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing, Peoples R ChinaBeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing, Peoples R China
Zhang, Jiwei
Xu, Zhenli
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Dept Math, Inst Nat Sci, Shanghai 200240, Peoples R China
Shanghai Jiao Tong Univ, MOE Key Lab Sci & Engn Comp, Shanghai 200240, Peoples R ChinaBeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing, Peoples R China
Xu, Zhenli
Wu, Xiaonan
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R ChinaBeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing, Peoples R China
Wu, Xiaonan
Wang, Desheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeBeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing, Peoples R China
机构:
Cergy Paris Univ, CNRS, F-95302 Cergy Pontoise, France
Cergy Paris Univ, Dept Math, F-95302 Cergy Pontoise, FranceCergy Paris Univ, CNRS, F-95302 Cergy Pontoise, France