Identification of multiscale spatio-temporal dynamical systems using a wavelet multiresolution analysis

被引:1
|
作者
Guo, L. Z. [1 ]
Billings, S. A. [1 ]
Coca, D. [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
multiscale identification; spatio-temporal system; orthogonal least squares algorithm; multiresolution analysis; PARAMETER-ESTIMATION; PATTERNS; MODELS;
D O I
10.1080/00207720902974694
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, a new algorithm for the multiscale identification of spatio-temporal dynamical systems is derived. It is shown that the input and output observations can be represented in a multiscale manner based on a wavelet multiresolution analysis. The system dynamics at some specific scale of interest can then be identified using an orthogonal forward least-squares algorithm. This model can then be converted between different scales to produce predictions of the system outputs at different scales. The method can be applied to both multiscale and conventional spatio-temporal dynamical systems. For multiscale systems, the method can generate a parsimonious and effective model at a coarser scale while considering the effects from finer scales. Additionally, the proposed method can be used to improve the performance of the identification when the measurements are noisy. Numerical examples are provided to demonstrate the application of the proposed new approach.
引用
收藏
页码:1115 / 1126
页数:12
相关论文
共 50 条
  • [41] Extended multiresolution lossless video coding using in-band spatio-temporal prediction
    Nakachi, T
    Sawabe, T
    Fujii, T
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (03) : 698 - 707
  • [42] On the use of spatio-temporal multiresolution analysis in method of moments solutions of transient electromagnetic scattering
    Shifman, Y
    Leviatan, Y
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2001, 49 (08) : 1123 - 1129
  • [43] Wavelet basis expansion-based spatio-temporal Volterra kernels identification for nonlinear distributed parameter systems
    Cheng, C. M.
    Dong, X. J.
    Peng, Z. K.
    Zhang, W. M.
    Meng, G.
    [J]. NONLINEAR DYNAMICS, 2014, 78 (02) : 1179 - 1192
  • [44] Wavelet basis expansion-based spatio-temporal Volterra kernels identification for nonlinear distributed parameter systems
    C. M. Cheng
    X. J. Dong
    Z. K. Peng
    W. M. Zhang
    G. Meng
    [J]. Nonlinear Dynamics, 2014, 78 : 1179 - 1192
  • [45] Spatio-temporal Trajectory Learning using Simulation Systems
    Glake, Daniel
    Panse, Fabian
    Lenfers, Ulfia
    Clemen, Thomas
    Ritter, Norbert
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 592 - 602
  • [46] State-space reconstruction and spatio-temporal prediction of lattice dynamical systems
    Guo, Lingzhong
    Billings, Stephen A.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (04) : 622 - 632
  • [47] Identification of partially known non-linear stochastic spatio-temporal dynamical systems by using a novel partially linear Kernel method
    Ning, Hanwen
    Jing, Xingjian
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (01): : 21 - 33
  • [48] A MULTISCALE SPATIO-TEMPORAL BACKGROUND MODEL FOR MOTION DETECTION
    Lu, Xiqun
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3268 - 3271
  • [49] Spatio-temporal analysis of particulate matter extremes in Seoul: use of multiscale approach
    Seoncheol Park
    Hee-Seok Oh
    [J]. Stochastic Environmental Research and Risk Assessment, 2017, 31 : 2401 - 2414
  • [50] Spatio-temporal analysis of particulate matter extremes in Seoul: use of multiscale approach
    Park, Seoncheol
    Oh, Hee-Seok
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (09) : 2401 - 2414