Bi-Lipschitz decomposition of Lipschitz functions into a metric space

被引:0
|
作者
Schul, Raanan [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Lipschitz; Bi-Lipschitz; metric space; uniform rectifiability; Sard's theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a quantitative version of the following statement. Given a Lipschitz function f from the k-dimensional unit cube into a general metric space, one can be decomposed f into a finite number of BiLipschitz functions f vertical bar(Fi) so that the k-Hausdorff content of f([0, 1](k)\boolean OR F(i)) is small. We thus generalize a theorem of P. Jones [7] from the setting of R(d) to the setting of a general metric space. This positively answers problem 11.13 in "Fractured Fractals and Broken Dreams" by G. David and S. Semmes, or equivalently, question 9 from "Thirty-three yes or no questions about mappings, measures, and metrics" by J. Heinonen and S. Semmes. Our statements extend to the case of coarse Lipschitz functions.
引用
收藏
页码:521 / 531
页数:11
相关论文
共 50 条
  • [21] On the extension of bi-Lipschitz mappings
    Lev Birbrair
    Alexandre Fernandes
    Zbigniew Jelonek
    Selecta Mathematica, 2021, 27
  • [22] BI-LIPSCHITZ INVARIANCE OF THE MULTIPLICITY
    Fernandes, Alexandre
    Sampaio, José Edson
    arXiv, 2022,
  • [23] Bi-Lipschitz extensions in the plane
    MacManus, P
    JOURNAL D ANALYSE MATHEMATIQUE, 1995, 66 : 85 - 115
  • [24] On the extension of bi-Lipschitz mappings
    Birbrair, Lev
    Fernandes, Alexandre
    Jelonek, Zbigniew
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (02):
  • [25] Gap property of Bi-Lipschitz constants of Bi-Lipschitz automorphisms on self-similar sets
    Lifeng Xi
    Ying Xiong
    Chinese Annals of Mathematics, Series B, 2010, 31 : 211 - 218
  • [26] Gap Property of Bi-Lipschitz Constants of Bi-Lipschitz Automorphisms on Self-similar Sets
    Xi, Lifeng
    Xiong, Ying
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2010, 31 (02) : 211 - 218
  • [27] AN INVARIANT OF BI-LIPSCHITZ MAPS
    MOVAHEDILANKARANI, H
    FUNDAMENTA MATHEMATICAE, 1993, 143 (01) : 1 - 9
  • [28] Bi-Lipschitz parameterization of surfaces
    Bonk, M
    Lang, U
    MATHEMATISCHE ANNALEN, 2003, 327 (01) : 135 - 169
  • [29] Gap Property of Bi-Lipschitz Constants of Bi-Lipschitz Automorphisms on Self-similar Sets
    Lifeng XI Ying XIONG Institute of Mathematics
    Chinese Annals of Mathematics,Series B, 2010, (02) : 211 - 218
  • [30] Gap Property of Bi-Lipschitz Constants of Bi-Lipschitz Automorphisms on Self-similar Sets
    Lifeng XI Ying XIONG Institute of MathematicsZhejiang Wanli UniversityNingbo ZhejiangChina Department of MathematicsSouth China University of TechnologyGuangzhou China
    Chinese Annals of Mathematics, 2010, 31 (02) : 211 - 218