Lie point symmetries for reduced Ermakov systems

被引:5
|
作者
Haas, F [1 ]
Goedert, J [1 ]
机构
[1] Univ Vale Rio dos Sinos, BR-93022000 Sao Leopoldo, RS, Brazil
关键词
Ermakov system; Lie symmetry; Ermakov invariant;
D O I
10.1016/j.physleta.2004.08.051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The condition for Lie point symmetries for reduced Ermakov systems is solved yielding three families of systems. SL(2, R) is always a group of symmetries when frequencies depends on time only. However, the generator of symmetries in more general cases have a contribution not associated with the SL(2, R) group. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 50 条
  • [41] Lie point symmetries of Stratonovich stochastic differential equations
    Kozlov, Roman
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (50)
  • [42] Partial Lie-point symmetries of differential equations
    Cicogna, G
    Gaeta, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 491 - 512
  • [43] Lie point symmetries and commuting flows for equations on lattices
    Levi, D
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (09): : 2249 - 2262
  • [44] Lie Point Symmetries of Differential-Difference Equations
    DING Wei~1 TANG Xiao-Yan~(2
    Communications in Theoretical Physics, 2004, 41 (05) : 645 - 648
  • [45] Lie-point symmetries and stochastic differential equations
    Gaeta, G
    Quintero, NR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (48): : 8485 - 8505
  • [46] Lie point symmetries and ODEs passing the Painlevé test
    D. Levi
    D. Sekera
    P. Winternitz
    Journal of Nonlinear Mathematical Physics, 2018, 25 : 604 - 617
  • [47] 'Air' polynomials, Lie point symmetries and a hyperbolic equation
    Leach, P. G. L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (18): : 5037 - 5052
  • [48] Lie point symmetries and first integrals: The Kowalevski top
    Marcelli, M
    Nucci, MC
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (05) : 2111 - 2132
  • [49] Lie point and variational symmetries in minisuperspace Einstein gravity
    Christodoulakis, T.
    Dimakis, N.
    Terzis, Petros A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (09)
  • [50] Lie point symmetries of differential-difference equations
    Ding, W
    Tang, XY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (05) : 645 - 648