Lie point symmetries for reduced Ermakov systems

被引:5
|
作者
Haas, F [1 ]
Goedert, J [1 ]
机构
[1] Univ Vale Rio dos Sinos, BR-93022000 Sao Leopoldo, RS, Brazil
关键词
Ermakov system; Lie symmetry; Ermakov invariant;
D O I
10.1016/j.physleta.2004.08.051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The condition for Lie point symmetries for reduced Ermakov systems is solved yielding three families of systems. SL(2, R) is always a group of symmetries when frequencies depends on time only. However, the generator of symmetries in more general cases have a contribution not associated with the SL(2, R) group. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 50 条
  • [21] Lie point symmetries and conservation laws for a class of BBM-KdV systems
    Silva Junior, Valter Aparecido
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 69 : 73 - 77
  • [22] THE LIE ALGEBRA sl(2, R) AND NOETHER POINT SYMMETRIES OF LAGRANGIAN SYSTEMS
    Campoamor-Stursberg, Rutwig
    PROCEEDINGS OF THE TWENTIETH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2019, : 99 - 114
  • [23] LIE-POINT SYMMETRIES OF DISCRETE VERSUS CONTINUOUS DYNAMICAL-SYSTEMS
    GAETA, G
    PHYSICS LETTERS A, 1993, 178 (5-6) : 376 - 384
  • [24] THE COMPUTER CALCULATION OF LIE POINT SYMMETRIES OF LARGE SYSTEMS OF DIFFERENTIAL-EQUATIONS
    CHAMPAGNE, B
    HEREMAN, W
    WINTERNITZ, P
    COMPUTER PHYSICS COMMUNICATIONS, 1991, 66 (2-3) : 319 - 340
  • [25] Conformal Symmetries and Conserved Quantities of Nonholonomic Systems under Lie Point Transformations
    Luo, Yi-Ping
    CHINESE JOURNAL OF PHYSICS, 2010, 48 (01) : 17 - 26
  • [26] Potential systems of a Buckley–Leverett equation: Lie point symmetries and conservation laws
    M. S. Bruzón
    A. P. Márquez
    E. Recio
    T. M. Garrido
    R. de la Rosa
    Journal of Mathematical Chemistry, 2020, 58 : 831 - 840
  • [27] LIE POINT-SYMMETRIES AND POINCARE NORMAL FORMS FOR DYNAMIC-SYSTEMS
    CICOGNA, G
    GAETA, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (16): : L799 - L802
  • [28] Lie point symmetries of difference equations and lattices
    Levi, D
    Tremblay, S
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (47): : 8507 - 8523
  • [29] On differential equations characterized by their Lie point symmetries
    Manno, Gianni
    Oliveri, Francesco
    Vitolo, Raffaele
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) : 767 - 786
  • [30] How to obtain Lie point symmetries of PDEs
    Kadhim, Sajid Mohammad
    Mohammad, Mayada Gassab
    Jassim, Hassan Kamil
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 22 (04): : 306 - 324