Lie point symmetries for reduced Ermakov systems

被引:5
|
作者
Haas, F [1 ]
Goedert, J [1 ]
机构
[1] Univ Vale Rio dos Sinos, BR-93022000 Sao Leopoldo, RS, Brazil
关键词
Ermakov system; Lie symmetry; Ermakov invariant;
D O I
10.1016/j.physleta.2004.08.051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The condition for Lie point symmetries for reduced Ermakov systems is solved yielding three families of systems. SL(2, R) is always a group of symmetries when frequencies depends on time only. However, the generator of symmetries in more general cases have a contribution not associated with the SL(2, R) group. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 50 条
  • [1] On the Lie Symmetries of Kepler—Ermakov Systems
    Ayşe Karasu(Kalkanli)
    Hasan Yildirim
    Journal of Nonlinear Mathematical Physics, 2002, 9 : 475 - 482
  • [2] On the Lie symmetries of a class of generalized Ermakov systems
    Goedert, J.
    Haas, F.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 239 (06): : 348 - 352
  • [3] On the Lie symmetries of a class of generalized Ermakov systems
    Goedert, J
    Haas, F
    PHYSICS LETTERS A, 1998, 239 (06) : 348 - 352
  • [4] On the Lie symmetries of Kepler-Ermakov systems
    Karasu, A
    Yildirim, H
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2002, 9 (04) : 475 - 482
  • [5] LIE SYMMETRIES, NON-LINEAR EQUATIONS OF MOTION AND NEW ERMAKOV SYSTEMS
    REID, JL
    RAY, JR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (09): : 2751 - 2760
  • [6] A Review in Ermakov Systems and Their Symmetries
    Cervero, Jose M.
    Estevez, Pilar G.
    SYMMETRY-BASEL, 2021, 13 (03):
  • [7] LIE POINT-SYMMETRIES FOR AUTONOMOUS SYSTEMS AND RESONANCE
    CICOGNA, G
    GAETA, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (06): : 1535 - 1538
  • [8] Lie-point symmetries and nonlinear dynamical systems
    Cicogna, G
    Gaeta, G
    MATHEMATICAL AND COMPUTER MODELLING, 1997, 25 (8-9) : 101 - 113
  • [9] Lie point symmetries of the Lane-Emden systems
    Bozhkov, Y
    Martins, ACG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (01) : 334 - 344
  • [10] Recent Applications of the Theory of Lie Systems in Ermakov Systems
    Carinena, Jose F.
    De Lucas, Javier
    Ranada, Manuel F.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4