Double bracket equations and geodesic flows on symmetric spaces

被引:29
|
作者
Bloch, AM
Brockett, RW
Crouch, PE
机构
[1] HARVARD UNIV,DIV APPL SCI,CAMBRIDGE,MA 02138
[2] ARIZONA STATE UNIV,CTR SYST SCI & ENGN,TEMPE,AZ 85287
关键词
D O I
10.1007/s002200050140
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we consider the geometry of Hamiltonian flows on the cotangent bundle of coadjoint orbits of compact Lie groups and on symmetric spaces. A key idea here is the use of the normal metric to define the kinetic energy, This leads to Hamiltonian flows of the double bracket type. We analyze the integrability of geodesic flows according to the method of Thimm. We obtain via the double bracket formalism a quite explicit form of the relevant commuting flows and a correspondingly transparent proof of involutivity. We demonstrate for example integrability of the geodesic flow on the real and complex Grassmannians. We also consider right invariant systems and the generalized rigid body equations in this setting.
引用
收藏
页码:357 / 373
页数:17
相关论文
共 50 条
  • [21] On the discretization of double-bracket flows
    Iserles, A
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2002, 2 (03) : 305 - 329
  • [22] EXPLICIT SOLUTION OF CALOGERO MODEL IN CLASSICAL CASE AND GEODESIC FLOWS ON SYMMETRIC SPACES OF ZERO CURVATURE
    OLSHANETSKY, MA
    PERELOMOV, AM
    LETTERE AL NUOVO CIMENTO, 1976, 16 (11): : 333 - 339
  • [23] Geodesic Mappings of Equiaffine and Ricci Symmetric Spaces
    Berezovskii, V. E.
    Guseva, N. I.
    Mikes, J.
    MATHEMATICAL NOTES, 2021, 110 (1-2) : 293 - 296
  • [24] Totally geodesic submanifolds in exceptional symmetric spaces
    Kollross, Andreas
    Rodriguez-Vazquez, Alberto
    ADVANCES IN MATHEMATICS, 2023, 418
  • [25] Geodesic Mappings of Equiaffine and Ricci Symmetric Spaces
    V. E. Berezovskii
    N. I. Guseva
    J. Mikeš
    Mathematical Notes, 2021, 110 : 293 - 296
  • [26] TOTALLY GEODESIC SUBMANIFOLDS IN RIEMANNIAN SYMMETRIC SPACES
    Klein, Sebastian
    DIFFERENTIAL GEOMETRY, 2009, : 136 - 145
  • [27] Totally geodesic surfaces of Riemannian symmetric spaces
    Mashimo, Katsuya
    Springer Proceedings in Mathematics and Statistics, 2014, 106 : 301 - 308
  • [28] ON TOTALLY GEODESIC SUBMANIFOLDS IN LOCALLY SYMMETRIC SPACES
    NAKAGAWA, H
    SHIOHAMA, K
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1970, 22 (03) : 342 - +
  • [29] TOTALLY GEODESIC SPHERES IN COMPACT SYMMETRIC SPACES
    HELGASON, S
    MATHEMATISCHE ANNALEN, 1966, 165 (04) : 309 - &
  • [30] Double Bracket Flows, Toda Flows and Rigid Body Toda
    Bloch, Anthony M.
    Gay-Balmaz, Francois
    Ratiu, Tudor S.
    2013 51ST ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2013, : 1567 - 1572