A 3D stacked global-shutter image sensor with pixel-level interconnection technology for high-speed image capturing

被引:2
|
作者
Kondo, T. [1 ]
Takemoto, Y. [1 ]
Takazawa, N. [1 ]
Tsukimura, M. [1 ]
Saito, H. [1 ]
Kato, H. [1 ]
Aoki, J. [1 ]
Suzuki, S. [1 ]
Gomi, Y. [1 ]
Matsuda, S. [1 ]
Tadaki, Y. [1 ]
机构
[1] Olympus Corp, R&D Div, 2-3 Kuboyama Cho, Hachioji, Tokyo 1928512, Japan
关键词
High frame rate; image sensor; global-shutter; 3D-stacking technology;
D O I
10.1117/12.2269058
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have developed a 3D stacked 16M-pixel, 3.8-mu m pixel pitch, global-shutter CMOS image sensor with pixel level interconnections using four million micro bumps. The four photodiodes in the unit pixel circuit on the top substrate share one micro-bump interconnection at a 7.6-mu m pitch. Each signal of the photodiodes is transferred to the corresponding storage node on the bottom substrate via the micro bump. This 3D architecture gives the image sensor not only a 16M-pixel global-shutter function but also a 2M-pixel 10K-fps high-speed image capturing mode with a burst of eight images. In this paper, we report on the improvement in the high-speed image capturing mode to operate at up to 100K fps by optimizing the timing for the higher-speed | image capturing with 2M-pixel resolution. In addition, we estimated the further potential of the 3D image sensor for high-speed image capturing to make the most of the 3D structure, which comprised one photodiode in the pixel unit circuit on the top substrate and electrically connected multiple storage nodes on the bottom substrate. This enables the image sensor to capture a burst of as many frames as the number of storage nodes in the pixel unit without sacrificing a photodiode and have better sensitivity with photodiodes fully occupying the chip surface with bigger photodiodes than when using conventional sensors. These results demonstrate that our 3D stacking technology pushes the envelope of capturing high-speed images with monolithic sensors.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] 3-Layer Stacked Voltage-Domain Global Shutter CMOS Image Sensor with 1.8μm-Pixel-Pitch
    Kim, Seung-Sik
    Lee, Gwi-Deok Ryan
    Park, Sang-Su
    Shim, Heesung
    Kim, Dae-Hoon
    Choi, Minjun
    Kim, Sangyoon
    Park, Gyunha
    Oh, Seung-Jae
    Moon, Joosung
    Park, Sungbong
    Yoon, Sol
    Jeong, Jihye
    Park, Sejin
    Lee, Sanggwon
    Lee, HaeJung
    Ryu, Wonoh
    Kim, Taehyoung
    Kwon, Doowon
    Choi, Hyuk Soon
    Kim, Hongki
    Go, Jonghyun
    Kim, JinGyun
    Lim, Seunghyun
    Na, HoonJoo
    Lee, Jae-Kyu
    Moon, Chang-Rok
    Song, Jaihyuk
    2022 INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2022,
  • [22] An 8.3M-pixel 480fps Global-Shutter CMOS Image Sensor with Gain-Adaptive Column ADCs and 2-on-1 Stacked Device Structure
    Oike, Yusuke
    Akiyama, Kentaro
    Hung, Luong D.
    Niitsuma, Wataru
    Kato, Akihiko
    Sato, Mamoru
    Kato, Yuri
    Nakamura, Wataru
    Shiroshita, Hiroshi
    Sakano, Yorito
    Kitano, Yoshiaki
    Nakamura, Takuya
    Toyama, Takayuki
    Iwamoto, Hayato
    Ezaki, Takayuki
    2016 IEEE SYMPOSIUM ON VLSI CIRCUITS (VLSI-CIRCUITS), 2016,
  • [23] 210ke- Saturation Signal 3μm-Pixel Variable-Sensitivity Global-Shutter Organic Photoconductive Image Sensor for Motion Capture
    Shishido, Sanshiro
    Miyake, Yasuo
    Sato, Yoshiaki
    Tamaki, Tokuhiko
    Shimasaki, Naoki
    Sato, Yoshihiro
    Murakami, Masashi
    Inoue, Yasunori
    2016 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2016, 59 : 112 - +
  • [24] 2.45 e-RMS Low-Random-Noise, 598.5 mW Low-Power, and 1.2 kfps High-Speed 2-Mp Global Shutter CMOS Image Sensor With Pixel-Level ADC and Memory
    Seo, Min-Woong
    Chu, Myunglae
    Jung, Hyun-Yong
    Kim, Suksan
    Song, Jiyoun
    Bae, Daehee
    Lee, Sanggwon
    Lee, Junan
    Kim, Sung-Yong
    Lee, Jongyeon
    Kim, Minkyung
    Lee, Gwi-Deok
    Shim, Heesung
    Um, Changyong
    Kim, Changhwa
    Baek, In-Gyu
    Kwon, Doowon
    Kim, Hongki
    Choi, Hyuksoon
    Go, Jonghyun
    Ahn, Jungchak
    Lee, Jae-Kyu
    Moon, Chang-Rok
    Lee, Kyupil
    Kim, Hyoung-Sub
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, 57 (04) : 1125 - 1137
  • [25] Pixel/DRAM/logic 3-layer stacked CMOS image sensor technology
    Tsugawa, H.
    Takahashi, H.
    Nakamura, R.
    Umebayashi, T.
    Ogita, T.
    Okano, H.
    Iwase, K.
    Kawashima, H.
    Yamasaki, T.
    Yoneyama, D.
    Hashizume, J.
    Nakajima, T.
    Murata, K.
    Kanaishi, Y.
    Ikeda, K.
    Tatani, K.
    Nagano, T.
    Nakayama, H.
    Haruta, T.
    Nomoto, T.
    2017 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2017,
  • [26] A high dynamic range CMOS image sensor with a novel pixel-level logarithmic counter memory
    Freedman, Saul D.
    Boussaid, Farid
    2015 2ND INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED ENGINEERING AND INNOVATION (KBEI), 2015, : 14 - 19
  • [27] A high-speed XGA 3-D image sensor and its applications
    Oike, Y
    Ikeda, M
    Asada, K
    IMAGE PROCESSING, BIOMEDICINE, MULTIMEDIA, FINANCIAL ENGINEERING AND MANUFACTURING, VOL 18, 2004, 18 : 209 - 216
  • [28] A low power global shutter pixel with extended FD voltage swing range for large format high speed CMOS image sensor
    YangFan Zhou
    ZhongXiang Cao
    Ye Han
    QuanLiang Li
    Cong Shi
    RunJiang Dou
    Qi Qin
    Jian Liu
    NanJian Wu
    Science China Information Sciences, 2015, 58 : 1 - 10
  • [29] A low power global shutter pixel with extended FD voltage swing range for large format high speed CMOS image sensor
    Zhou YangFan
    Cao ZhongXiang
    Han Ye
    Li QuanLiang
    Shi Cong
    Dou RunJiang
    Qin Qi
    Liu Jian
    Wu NanJian
    SCIENCE CHINA-INFORMATION SCIENCES, 2015, 58 (04) : 1 - 10
  • [30] A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous
    Tochigi, Yasuhisa
    Hanzawa, Katsuhiko
    Kato, Yuri
    Kuroda, Rihito
    Mutoh, Hideki
    Hirose, Ryuta
    Tominaga, Hideki
    Takubo, Kenji
    Kondo, Yasushi
    Sugawa, Shigetoshi
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2013, 48 (01) : 329 - 338