Combining ELM with Random Projections for Low and High Dimensional Data Classification and Clustering

被引:4
|
作者
Alshamiri, Abobakr Khalil [1 ]
Singh, Alok [1 ]
Surampudi, Bapi Raju [1 ,2 ]
机构
[1] Univ Hyderabad, Sch Comp & Informat Sci, Hyderabad 500046, Andhra Pradesh, India
[2] Int Inst Informat Technol, Cognit Sci Lab, Hyderabad 500032, Andhra Pradesh, India
关键词
Extreme learning machine; Random projection; Classification; Clustering; EXTREME LEARNING-MACHINE;
D O I
10.1007/978-3-319-27212-2_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extreme learning machine (ELM), as a new learning method for training feedforward neural networks, has shown its good generalization performance in regression and classification applications. Random projection (RP), as a simple and powerful technique for dimensionality reduction, is used for projecting high-dimensional data into low-dimensional subspaces while ensuring that the distances between data points are approximately preserved. This paper presents a systematic study on the application of RP in conjunction with ELM for both low-and high-dimensional data classification and clustering.
引用
收藏
页码:89 / 107
页数:19
相关论文
共 50 条
  • [41] Laplacian-Weighted Random Forest for High-Dimensional Data Classification
    Liang, Jianheng
    Huang, Dong
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 748 - 753
  • [42] High-dimensional data clustering
    Bouveyron, C.
    Girard, S.
    Schmid, C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 502 - 519
  • [43] Subspace clustering of high dimensional data
    Domeniconi, C
    Papadopoulos, D
    Gunopulos, D
    Ma, S
    Proceedings of the Fourth SIAM International Conference on Data Mining, 2004, : 517 - 521
  • [44] Clustering High-Dimensional Data
    Masulli, Francesco
    Rovetta, Stefano
    CLUSTERING HIGH-DIMENSIONAL DATA, CHDD 2012, 2015, 7627 : 1 - 13
  • [45] Fuzzy ensemble clustering based on random projections for DNA microarray data analysis
    Avogadri, Roberto
    Valentini, Giorgio
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2009, 45 (2-3) : 173 - 183
  • [46] Parallel Clustering Algorithm for High-dimensional Data Combining Improved Fruit Fly Optimization and Density Peak Clustering
    Zhao, Yufeng
    He, Jie
    Journal of Network Intelligence, 2024, 9 (02): : 749 - 762
  • [47] Random projections fuzzy c-means (RPFCM) for big data clustering
    Popescu, Mihail
    Keller, James
    Bezdek, James
    Zare, Alina
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [48] Scalable clustering of high dimensional data
    Littau, D
    Boley, D
    BETWEEN DATA SCIENCE AND APPLIED DATA ANALYSIS, 2003, : 57 - 64
  • [49] High-dimensional outlier detection using random projections
    Navarro-Esteban, P.
    Cuesta-Albertos, J. A.
    TEST, 2021, 30 (04) : 908 - 934
  • [50] High-dimensional outlier detection using random projections
    P. Navarro-Esteban
    J. A. Cuesta-Albertos
    TEST, 2021, 30 : 908 - 934