Mathieu moonshine and Siegel Modular Forms

被引:2
|
作者
Govindarajan, Suresh [1 ]
Samanta, Sutapa [2 ]
机构
[1] Indian Inst Technol Madras, Dept Phys, Chennai 600036, Tamil Nadu, India
[2] Indian Assoc Cultivat Sci, Sch Phys Sci, Kolkata 700032, India
关键词
Black Holes in String Theory; Extended Supersymmetry;
D O I
10.1007/JHEP03(2021)050
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A second-quantized version of Mathieu moonshine leads to product formulae for functions that are potentially genus-two Siegel Modular Forms analogous to the Igusa Cusp Form. The modularity of these functions do not follow in an obvious manner. For some conjugacy classes, but not all, they match known modular forms. In this paper, we express the product formulae for all conjugacy classes of M-24 in terms of products of standard modular forms. This provides a new proof of their modularity.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Mathieu moonshine and Siegel Modular Forms
    Suresh Govindarajan
    Sutapa Samanta
    [J]. Journal of High Energy Physics, 2021
  • [2] CHL Calabi-Yau threefolds: curve counting, Mathieu moonshine and Siegel modular forms
    Bryan, Jim
    Oberdieck, Georg
    [J]. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2020, 14 (04) : 785 - 862
  • [3] Mock modular Mathieu moonshine modules
    Cheng, Miranda C. N.
    Dong, Xi
    Duncan, John F. R.
    Harrison, Sarah
    Kachru, Shamit
    Wrase, Timm
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2015, 2 (01)
  • [4] Mock modular Mathieu moonshine modules
    Miranda C N Cheng
    Xi Dong
    John F R Duncan
    Sarah Harrison
    Shamit Kachru
    Timm Wrase
    [J]. Research in the Mathematical Sciences, 2
  • [5] On Siegel modular forms
    Kohnen, W
    [J]. COMPOSITIO MATHEMATICA, 1996, 103 (02) : 219 - 226
  • [6] Lifting Siegel modular forms
    Stroh, Benoit
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (09) : 3089 - 3094
  • [7] A note on Siegel modular forms
    Wang, JP
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (06): : 561 - 567
  • [8] HILBERT AND SIEGEL MODULAR FORMS
    VINOGRADOW, AI
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 274 : 342 - 359
  • [9] Codes and Siegel modular forms
    Runge, B
    [J]. DISCRETE MATHEMATICS, 1996, 148 (1-3) : 175 - 204
  • [10] A note on Siegel modular forms
    Juping Wang
    [J]. Science in China Series A: Mathematics, 2000, 43 : 561 - 567