Mathieu moonshine and Siegel Modular Forms

被引:2
|
作者
Govindarajan, Suresh [1 ]
Samanta, Sutapa [2 ]
机构
[1] Indian Inst Technol Madras, Dept Phys, Chennai 600036, Tamil Nadu, India
[2] Indian Assoc Cultivat Sci, Sch Phys Sci, Kolkata 700032, India
关键词
Black Holes in String Theory; Extended Supersymmetry;
D O I
10.1007/JHEP03(2021)050
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A second-quantized version of Mathieu moonshine leads to product formulae for functions that are potentially genus-two Siegel Modular Forms analogous to the Igusa Cusp Form. The modularity of these functions do not follow in an obvious manner. For some conjugacy classes, but not all, they match known modular forms. In this paper, we express the product formulae for all conjugacy classes of M-24 in terms of products of standard modular forms. This provides a new proof of their modularity.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] RAMANUJAN CONGRUENCES FOR SIEGEL MODULAR FORMS
    Dewar, Michael
    Richter, Olav K.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (07) : 1677 - 1687
  • [32] Congruences between Siegel modular forms
    Takashi Ichikawa
    [J]. Mathematische Annalen, 2008, 342 : 527 - 532
  • [33] Siegel modular forms of small weight
    Duke, W
    Imamoglu, O
    [J]. MATHEMATISCHE ANNALEN, 1998, 310 (01) : 73 - 82
  • [34] Congruences for Siegel modular forms and their weights
    Siegfried Böcherer
    Shoyu Nagaoka
    [J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2010, 80 : 227 - 231
  • [35] Generalized transvectants and Siegel modular forms
    Olver, P. J.
    Petitot, M.
    Sole, P.
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2007, 38 (03) : 404 - 418
  • [36] ON CODES AND SIEGEL MODULAR-FORMS
    DUKE, W
    [J]. DUKE MATHEMATICAL JOURNAL, 1993, 70 (02) : A125 - A136
  • [37] NEARLY OVERCONVERGENT SIEGEL MODULAR FORMS
    Liu, Zheng
    [J]. ANNALES DE L INSTITUT FOURIER, 2019, 69 (06) : 2439 - 2506
  • [38] Congruences for Siegel modular forms and their weights
    Boecherer, Siegfried
    Nagaoka, Shoyu
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2010, 80 (02): : 227 - 231
  • [39] Sturm bounds for Siegel modular forms
    Richter, Olav K.
    Westerholt-Raum, Martin
    [J]. RESEARCH IN NUMBER THEORY, 2015, 1 (01)
  • [40] Congruences between Siegel modular forms
    Ichikawa, Takashi
    [J]. MATHEMATISCHE ANNALEN, 2008, 342 (03) : 527 - 532