Mock modular Mathieu moonshine modules

被引:17
|
作者
Cheng, Miranda C. N. [1 ,2 ]
Dong, Xi [3 ,4 ]
Duncan, John F. R. [5 ]
Harrison, Sarah [3 ,4 ]
Kachru, Shamit [3 ,4 ]
Wrase, Timm [3 ,4 ]
机构
[1] Univ Amsterdam, Inst Phys, Amsterdam, Netherlands
[2] Univ Amsterdam, Korteweg de Vries Inst Math, Amsterdam, Netherlands
[3] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[4] Stanford Univ, SLAC, Stanford, CA 94305 USA
[5] Case Western Reserve Univ, Dept Math Appl Math & Stat, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
ELLIPTIC GENUS; UNITARY REPRESENTATIONS; CHARACTER FORMULAS; RADEMACHER SUMS; N=2;
D O I
10.1186/s40687-015-0034-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct super vertex operator algebras which lead to modules for moonshine relations connecting the four smaller sporadic simple Mathieu groups with distinguished mock modular forms. Starting with an orbifold of a free fermion theory, any subgroup of Co0 that fixes a 3-dimensional subspace of its unique non-trivial 24-dimensional representation commutes with a certain N = 4 superconformal algebra. Similarly, any subgroup of Co0 that fixes a 2-dimensional subspace of the 24-dimensional representation commutes with a certain N = 2 superconformal algebra. Through the decomposition of the corresponding twined partition functions into characters of the N = 4 (resp. N = 2) superconformal algebra, we arrive at mock modular forms which coincide with the graded characters of an infinite-dimensional Z-graded module for the corresponding group. The Mathieu groups are singled out amongst various other possibilities by the moonshine property: requiring the corresponding weak Jacobi forms to have certain asymptotic behaviour near cusps. Our constructions constitute the first examples of explicitly realized modules underlying moonshine phenomena relating mock modular forms to sporadic simple groups. Modules for other groups, including the sporadic groups of McLaughlin and Higman-Sims, are also discussed.
引用
收藏
页数:89
相关论文
共 50 条
  • [1] Mock modular Mathieu moonshine modules
    Miranda C N Cheng
    Xi Dong
    John F R Duncan
    Sarah Harrison
    Shamit Kachru
    Timm Wrase
    [J]. Research in the Mathematical Sciences, 2
  • [2] Mathieu moonshine and Siegel Modular Forms
    Suresh Govindarajan
    Sutapa Samanta
    [J]. Journal of High Energy Physics, 2021
  • [3] Mathieu moonshine and Siegel Modular Forms
    Govindarajan, Suresh
    Samanta, Sutapa
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (03)
  • [4] From Moonshine to Mock Moonshine
    Marathe, Kishore
    [J]. VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (01) : 183 - 193
  • [5] From Moonshine to Mock Moonshine
    Kishore Marathe
    [J]. Vietnam Journal of Mathematics, 2019, 47 : 183 - 193
  • [6] Generalized Mathieu Moonshine
    Gaberdiel, Matthias R.
    Persson, Daniel
    Ronellenfitsch, Henrik
    Volpato, Roberto
    [J]. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2013, 7 (01) : 145 - 223
  • [7] Unravelling Mathieu moonshine
    Govindarajan, Suresh
    [J]. NUCLEAR PHYSICS B, 2012, 864 (03) : 823 - 839
  • [8] On the discrete groups of Mathieu Moonshine
    Cheng, Miranda C. N.
    Duncan, John F. R.
    [J]. PERSPECTIVES IN REPRESENTATION THEORY: A CONFERENCE IN HONOR OF IGOR FRENKEL'S 60TH BIRTHDAY ON PERSPECTIVES IN REPRESENTATION THEORY, 2014, 610 : 65 - 78
  • [9] Mathieu Moonshine and symmetry surfing
    Gaberdiel, Matthias R.
    Keller, Christoph A.
    Paul, Hynek
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (47)
  • [10] ADE double scaled little string theories, mock modular forms and Umbral Moonshine
    Harvey, Jeffrey A.
    Murthy, Sameer
    Nazaroglu, Caner
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05):