Optimal robust influence functions in semiparametric regression

被引:0
|
作者
Hable, R. [1 ]
Ruckdeschel, P. [2 ]
Rieder, H. [1 ]
机构
[1] Univ Bayreuth, Dept Math, D-95440 Bayreuth, Germany
[2] Fraunhofer Inst Techno & Wirtschaftsmath, D-67663 Kaiserslautern, Germany
关键词
Robust statistics; Semiparametric model; Influence function; Neighborhoods; Mean square error; Cox regression; ESTIMATORS;
D O I
10.1016/j.jspi.2009.07.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Robust statistics allows the distribution of the observations to be any member of a suitable neighborhood about an ideal model distribution. In this paper, the ideal models are semi-parametric with finite-dimensional parameter of interest and a possibly infinite-dimensional nuisance parameter. In the asymptotic setup of shrinking neighborhoods, we derive and study the Hampel-type problem and the minmax MSE-problem. We show that, for all common types of neighborhood systems, the optimal influence function (psi) over tilde can be approximated by the optimal influence functions (psi) over tilde (n) for certain parametric models. For general semiparametric regression models, we determine ((psi) over tilde (n))(n is an element of N) in case of error-in-variables and in case of error-free-variables. Finally, the results are applied to Cox regression where we compare our approach to that of Bednarski [1993. Robust estimation in Cox's regression model. Scand. J. Statist. 20, 213-225] in a small simulation study and on a real data set. (C) 2009 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:226 / 245
页数:20
相关论文
共 50 条
  • [41] Analysis of generalized semiparametric regression models for cumulative incidence functions with missing covariates
    Lee, Unkyung
    Sun, Yanqing
    Scheike, Thomas H.
    Gilbert, Peter B.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 122 : 59 - 79
  • [42] SEMIPARAMETRIC ADDITIVE BETA REGRESSION MODELS: INFERENCE AND LOCAL INFLUENCE DIAGNOSTICS
    Ibacache-Pulgar, German
    Figueroa-Zuniga, Jorge
    Marchant, Carolina
    REVSTAT-STATISTICAL JOURNAL, 2021, 19 (02) : 255 - 274
  • [43] Robust inference by influence functions
    Ronchetti, E
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 57 (01) : 59 - 72
  • [44] Least-trimmed squares: asymptotic normality of robust estimator in semiparametric regression models
    Roozbeh, Mahdi
    Arashi, Mohammad
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (06) : 1130 - 1147
  • [45] Robust estimation for semiparametric spatial autoregressive models via weighted composite quantile regression
    Tang, Xinrong
    Zhao, Peixin
    Zhou, Xiaoshuang
    Zhang, Weijia
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [46] Robust variable selection in semiparametric mean-covariance regression for longitudinal data analysis
    Guo, Chaohui
    Yang, Hu
    Lv, Jing
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 343 - 356
  • [47] Discussion of nonparametric and semiparametric regression
    Marron, JS
    Müller, HG
    Rice, J
    Wang, JL
    Wang, NY
    Wang, YD
    Davidian, M
    Diggle, P
    Follmann, D
    Louis, TA
    Taylor, J
    Zeger, S
    Goetghebeur, E
    Carroll, RJ
    STATISTICA SINICA, 2004, 14 (03) : 615 - 629
  • [48] A SEMIPARAMETRIC CENSORED REGRESSION ESTIMATOR
    DUNCAN, GM
    JOURNAL OF ECONOMETRICS, 1986, 32 (01) : 5 - 34
  • [49] A DIRECT SEMIPARAMETRIC RECEIVER OPERATING CHARACTERISTIC CURVE REGRESSION WITH UNKNOWN LINK AND BASELINE FUNCTIONS
    Lin, Huazhen
    Zhou, Xiao-Hua
    Li, Gang
    STATISTICA SINICA, 2012, 22 (04) : 1427 - 1456
  • [50] Semiparametric regression for clustered data
    Lin, XH
    Carroll, RJ
    BIOMETRIKA, 2001, 88 (04) : 1179 - 1185