Optimal robust influence functions in semiparametric regression

被引:0
|
作者
Hable, R. [1 ]
Ruckdeschel, P. [2 ]
Rieder, H. [1 ]
机构
[1] Univ Bayreuth, Dept Math, D-95440 Bayreuth, Germany
[2] Fraunhofer Inst Techno & Wirtschaftsmath, D-67663 Kaiserslautern, Germany
关键词
Robust statistics; Semiparametric model; Influence function; Neighborhoods; Mean square error; Cox regression; ESTIMATORS;
D O I
10.1016/j.jspi.2009.07.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Robust statistics allows the distribution of the observations to be any member of a suitable neighborhood about an ideal model distribution. In this paper, the ideal models are semi-parametric with finite-dimensional parameter of interest and a possibly infinite-dimensional nuisance parameter. In the asymptotic setup of shrinking neighborhoods, we derive and study the Hampel-type problem and the minmax MSE-problem. We show that, for all common types of neighborhood systems, the optimal influence function (psi) over tilde can be approximated by the optimal influence functions (psi) over tilde (n) for certain parametric models. For general semiparametric regression models, we determine ((psi) over tilde (n))(n is an element of N) in case of error-in-variables and in case of error-free-variables. Finally, the results are applied to Cox regression where we compare our approach to that of Bednarski [1993. Robust estimation in Cox's regression model. Scand. J. Statist. 20, 213-225] in a small simulation study and on a real data set. (C) 2009 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:226 / 245
页数:20
相关论文
共 50 条
  • [31] SEMIPARAMETRIC ADDITIVE REGRESSION
    CUZICK, J
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1992, 54 (03): : 831 - 843
  • [32] Semiparametric Regression with R
    Heckler, Charles E.
    TECHNOMETRICS, 2022, 64 (01) : 145 - 148
  • [33] SEMIPARAMETRIC REGRESSION PURSUIT
    Huang, Jian
    Wei, Fengrong
    Ma, Shuangge
    STATISTICA SINICA, 2012, 22 (04) : 1403 - 1426
  • [34] Optimal and robust designs for trigonometric regression models
    Xiaojian Xu
    Xiaoli Shang
    Metrika, 2014, 77 : 753 - 769
  • [35] Robust intuitionistic fuzzy regression functions approaches
    Egrioglu, Erol
    Bas, Eren
    INFORMATION SCIENCES, 2023, 638
  • [36] Robust estimation and regression with parametric quantile functions
    Sottile, Gianluca
    Frumento, Paolo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 171
  • [37] Optimal and robust designs for trigonometric regression models
    Xu, Xiaojian
    Shang, Xiaoli
    METRIKA, 2014, 77 (06) : 753 - 769
  • [38] Robust estimation and regression with parametric quantile functions
    Sottile, Gianluca
    Frumento, Paolo
    Computational Statistics and Data Analysis, 2022, 171
  • [39] Robust regression for optimal individualized treatment rules
    Xiao, W.
    Zhang, H. H.
    Lu, W.
    STATISTICS IN MEDICINE, 2019, 38 (11) : 2059 - 2073
  • [40] A Semiparametric Estimation for Regression Functions in the Partially Linear Autoregressive Time Series Model
    Farnoosh, R.
    Hajebi, M.
    Mortazavi, S. J.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2014, 9 (02): : 573 - 591