Estimation of electrical resistivity using artificial neural networks: a case study from Lublin Basin, SE Poland

被引:9
|
作者
Wazny, Jakub [1 ]
Stefaniuk, Michal [1 ]
Cygal, Adam [1 ]
机构
[1] AGH Univ Sci & Technol, Krakow, Poland
关键词
Artificial neural networks; Well logging; Electrical resistivity; LLD; Magnetotellurics; Parametric sounding; Lublin basin;
D O I
10.1007/s11600-021-00554-0
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Artificial neural networks method (ANNs) is a common estimation tool used for geophysical applications. Considering borehole data, when the need arises to supplement a missing well log interval or whole logging-ANNs provide a reliable solution. Supervised training of the network on a reliable set of borehole data values with further application of this network on unknown wells allows creation of synthetic values of missing geophysical parameters, e.g., resistivity. The main assumptions for boreholes are: representation of similar geological conditions and the use of similar techniques of well data collection. In the analyzed case, a set of Multilayer Perceptrons were trained on five separate chronostratigraphic intervals of borehole, considered as training data. The task was to predict missing deep laterolog (LLD) logging in a borehole representing the same sequence of layers within the Lublin Basin area. Correlation between well logs data exceeded 0.8. Subsequently, magnetotelluric parametric soundings were modeled and inverted on both boreholes. Analysis showed that congenial Occam 1D models had better fitting of TM mode of MT data in each case. Ipso facto, synthetic LLD log could be considered as a basis for geophysical and geological interpretation. ANNs provided solution for supplementing datasets based on this analytical approach.
引用
收藏
页码:631 / 642
页数:12
相关论文
共 50 条
  • [31] Direction of Arrival Estimation by Using Artificial Neural Networks
    Unlersen, Muhammes Fahri
    Yaldiz, Ercan
    UKSIM-AMSS 10TH EUROPEAN MODELLING SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS), 2016, : 242 - 245
  • [32] Efficient estimation of osteoporosis using artificial neural networks
    Lemineur, Gerald
    Harba, Rachid
    Kilic, Niyazi
    Ucan, Osman N.
    Osman, Onur
    Benhamou, Laurent
    IECON 2007: 33RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, CONFERENCE PROCEEDINGS, 2007, : 3039 - +
  • [33] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [34] Probability density estimation using artificial neural networks
    Likas, A
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 135 (02) : 167 - 175
  • [35] DIRECTION OF ARRIVAL ESTIMATION USING ARTIFICIAL NEURAL NETWORKS
    JHA, S
    DURRANI, T
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (05): : 1192 - 1201
  • [36] Estimation of daily evaporation using artificial neural networks
    Doǧan, Emrah
    Işik, Sabahattin
    Sandalci, Mehmet
    Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2007, 18 (02): : 4119 - 4131
  • [37] Solar radiation estimation using artificial neural networks
    Dorvlo, ASS
    Jervase, JA
    Al-Lawati, A
    APPLIED ENERGY, 2002, 71 (04) : 307 - 319
  • [38] Wireless User Estimation Using Artificial Neural Networks
    Abinoja, Daniel
    Bedruz, Rhen Anjerome
    Jovellanos, Kevin Loo
    Bandala, Argel
    2015 INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY,COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2015, : 475 - +
  • [39] Estimation of daily evaporation using Artificial Neural Networks
    Dogan, Emrah
    Isik, Sabahattin
    Sandalci, Mehmet
    TEKNIK DERGI, 2007, 18 (02): : 4119 - 4131
  • [40] Monthly Runoff Estimation Using Artificial Neural Networks
    Yazdani, M. R.
    Saghafian, B.
    Mahdian, M. H.
    Soltani, S.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2009, 11 (03): : 355 - 362