Meta Learning-Based MIMO Detectors: Design, Simulation, and Experimental Test

被引:31
|
作者
Zhang, Jing [1 ]
He, Yunfeng [1 ]
Li, Yu-Wen [2 ]
Wen, Chao-Kai [2 ]
Jin, Shi [1 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 80424, Taiwan
基金
美国国家科学基金会;
关键词
MIMO communication; Artificial neural networks; Detectors; Training; Receivers; Damping; Signal detection; MIMO detector; turbo receiver; expectation propagation; meta learning; over-the-air platform; ALGORITHMS; POWER;
D O I
10.1109/TWC.2020.3030882
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep neural networks (NNs) have exhibited considerable potential for efficiently balancing the performance and complexity of multiple-input and multiple-output (MIMO) detectors. However, existing NN-based MIMO detectors are difficult to be deployed in practical systems because of their slow convergence speed and low robustness in new environments. To address these issues systematically, we propose a receiver framework that enables efficient online training by leveraging the following simple observation: although NN parameters should adapt to channels, not all of them are channel-sensitive. In particular, we use a deep unfolded NN structure that represents iterative algorithms in signal detection and channel decoding modules as multi layer deep feed forward networks. An expectation propagation (EP) module, called EPNet, is established for signal detection by unfolding the EP algorithm and rendering the damping factors trainable. An unfolded turbo decoding module, called TurboNet, is used for channel decoding. This component decodes the turbo code, where trainable NN units are integrated into the traditional max-log-maximum a posteriori decoding procedure. We demonstrate that TurboNet is robust for channels and requires only one off-line training. Therefore, only a few damping factors in EPNet must be re-optimized online. An online training mechanism based on meta learning is then developed. Here, the optimizer, which is implemented by long short-term memory NNs, is trained to update damping factors efficiently by using a small training set such that they can quickly adapt to new environments. Simulation results indicate that the proposed receiver significantly outperforms traditional receivers and that the online learning mechanism can quickly adapt to new environments. Furthermore, an over-the-air platform is presented to demonstrate the significant robustness of the proposed receiver in practical deployment.
引用
收藏
页码:1122 / 1137
页数:16
相关论文
共 50 条
  • [41] Machine Learning-based Prediction of Test Power
    Dhotre, Harshad
    Eggersgluess, Stephan
    Chakrabarty, Krishnendu
    Drechsler, Rolf
    2019 IEEE EUROPEAN TEST SYMPOSIUM (ETS), 2019,
  • [42] Deep Learning-Based Implicit CSI Feedback in Massive MIMO
    Chen, Muhan
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    Yang, Ang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 935 - 950
  • [43] Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO
    Lopes, Victor Hugo L.
    Nahum, Cleverson Veloso
    Dreifuerst, Ryan M.
    Batista, Pedro
    Klautau, Aldebaro
    Cardoso, Kleber Vieira
    Heath Jr, Robert W.
    IEEE ACCESS, 2022, 10 : 125509 - 125525
  • [44] Manifold Learning-Based CSI Feedback in Massive MIMO Systems
    Cao, Yandi
    Yin, Haifan
    He, Gaoning
    Debbah, Merouane
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 225 - 230
  • [45] Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO
    Lopes, Victor Hugo L.
    Nahum, Cleverson Veloso
    Dreifuerst, Ryan M.
    Batista, Pedro
    Klautau, Aldebaro
    Cardoso, Kleber Vieira
    Heath, Robert W.
    IEEE Access, 2022, 10 : 125509 - 125525
  • [46] Deep Learning-Based Channel Estimation for Massive MIMO Systems
    Chun, Chang-Jae
    Kang, Jae-Mo
    Kim, Il-Min
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (04) : 1228 - 1231
  • [47] Continual Learning-Based MIMO Channel Estimation: A Benchmarking Study
    Akrout, Mohamed
    Feriani, Amal
    Bellili, Faouzi
    Mezghani, Amine
    Hossain, Ekram
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 2631 - 2636
  • [48] Deep Learning-Based Limited Feedback Designs for MIMO Systems
    Jang, Jeonghyeon
    Lee, Hoon
    Hwang, Sangwon
    Ren, Haibao
    Lee, Inkyu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (04) : 558 - 561
  • [49] A deep learning-based antenna selection approach in MIMO system
    Fatima Zohra Bouchibane
    Hakim Tayakout
    Elhocine Boutellaa
    Telecommunication Systems, 2023, 84 : 69 - 76
  • [50] Learning-Based Scheduling: Contextual Bandits For Massive MIMO Systems
    Mauricio, Weskley V. F.
    Maciel, Tarcisio F.
    Klein, Anja
    Lima, F. Rafael M.
    2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2020,