Deep Learning-Based Implicit CSI Feedback in Massive MIMO

被引:31
|
作者
Chen, Muhan [1 ]
Guo, Jiajia [1 ]
Wen, Chao-Kai [2 ]
Jin, Shi [1 ]
Li, Geoffrey Ye [3 ]
Yang, Ang [4 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 80424, Taiwan
[3] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[4] Vivo Mobile Commun Co Ltd, Commun Res Inst, Beijing 100015, Peoples R China
基金
中国国家自然科学基金;
关键词
Precoding; Artificial neural networks; Downlink; 5G mobile communication; Transmitting antennas; Massive MIMO; Antenna feeds; FDD; deep learning; implicit feedback; SVD; eigenvector; DOWNLINK CHANNEL PREDICTION; SPECTRAL ENTROPY; COMPRESSION; CAPACITY;
D O I
10.1109/TCOMM.2021.3138097
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Massive multiple-input multiple-output can obtain more performance gain by exploiting the downlink channel state information (CSI) at the base station (BS). Therefore, studying CSI feedback with limited communication resources in frequency-division duplexing systems is of great importance. Recently, deep learning (DL)-based CSI feedback has shown considerable potential. However, the existing DL-based explicit feedback schemes are difficult to deploy because current fifth-generation mobile communication protocols and systems are designed based on an implicit feedback mechanism. In this paper, we propose a DL-based implicit feedback architecture to inherit the low-overhead characteristic, which uses neural networks (NNs) to replace the precoding matrix indicator (PMI) encoding and decoding modules. By using environment information, the NNs can achieve a more refined mapping between the precoding matrix and the PMI compared with codebooks. The correlation between subbands is also used to further improve the feedback performance. Simulation results show that, for a single resource block (RB), the proposed architecture can save 25.0% - 40.0% of overhead compared with the Type I codebook under different antenna configurations. For a wideband system with 52 RBs, overhead can be saved by 30.7% and 48.0% compared with the Type II codebook when ignoring and considering extracting subband correlation, respectively.
引用
收藏
页码:935 / 950
页数:16
相关论文
共 50 条
  • [1] Deep Learning-Based Massive MIMO CSI Feedback
    Li, Jialing
    Zhang, Qi
    Xin, Xiangjun
    Tao, Ying
    Tian, Qinghua
    Tian, Feng
    Chen, Dong
    Shen, Yufei
    Cao, Guixing
    Gao, Zihe
    Qian, Jinxi
    2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2019,
  • [2] Deep Learning-based Implicit CSI Feedback for Time-varying Massive MIMO Channels
    Jiang, Chengyong
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Hou, Xiaolin
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4955 - 4960
  • [3] Overview of Deep Learning-Based CSI Feedback in Massive MIMO Systems
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) : 8017 - 8045
  • [4] Unsupervised Online Learning in Deep Learning-Based Massive MIMO CSI Feedback
    Cui, Yiming
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Han, Shuangfeng
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (09) : 2086 - 2090
  • [5] MRFNet: A Deep Learning-Based CSI Feedback Approach of Massive MIMO Systems
    Hu, Zhengyang
    Guo, Jianhua
    Liu, Guanzhang
    Zheng, Hanying
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3310 - 3314
  • [6] A Novel Quantization Method for Deep Learning-Based Massive MIMO CSI Feedback
    Chen, Tong
    Guo, Jiajia
    Jin, Shi
    Wen, Chao-Kai
    Li, Geoffrey Ye
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [7] Manifold Learning-Based CSI Feedback in Massive MIMO Systems
    Cao, Yandi
    Yin, Haifan
    He, Gaoning
    Debbah, Merouane
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 225 - 230
  • [8] Learning-based Integrated CSI Feedback and Localization in Massive MIMO
    Guo J.
    Lv Y.
    Wen C.
    Li X.
    Jin S.
    IEEE Transactions on Wireless Communications, 2024, 23 (10) : 1 - 1
  • [9] Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems
    Ye, Hongyuan
    Gao, Feifei
    Qian, Jing
    Wang, Hao
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1742 - 1746
  • [10] Deep Learning-Based CSI Feedback for Terahertz Ultra-Massive MIMO Systems
    Li, Yuling
    Guo, Aihuang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (08) : 1413 - 1416