Deep Learning-Based Implicit CSI Feedback in Massive MIMO

被引:31
|
作者
Chen, Muhan [1 ]
Guo, Jiajia [1 ]
Wen, Chao-Kai [2 ]
Jin, Shi [1 ]
Li, Geoffrey Ye [3 ]
Yang, Ang [4 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 80424, Taiwan
[3] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[4] Vivo Mobile Commun Co Ltd, Commun Res Inst, Beijing 100015, Peoples R China
基金
中国国家自然科学基金;
关键词
Precoding; Artificial neural networks; Downlink; 5G mobile communication; Transmitting antennas; Massive MIMO; Antenna feeds; FDD; deep learning; implicit feedback; SVD; eigenvector; DOWNLINK CHANNEL PREDICTION; SPECTRAL ENTROPY; COMPRESSION; CAPACITY;
D O I
10.1109/TCOMM.2021.3138097
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Massive multiple-input multiple-output can obtain more performance gain by exploiting the downlink channel state information (CSI) at the base station (BS). Therefore, studying CSI feedback with limited communication resources in frequency-division duplexing systems is of great importance. Recently, deep learning (DL)-based CSI feedback has shown considerable potential. However, the existing DL-based explicit feedback schemes are difficult to deploy because current fifth-generation mobile communication protocols and systems are designed based on an implicit feedback mechanism. In this paper, we propose a DL-based implicit feedback architecture to inherit the low-overhead characteristic, which uses neural networks (NNs) to replace the precoding matrix indicator (PMI) encoding and decoding modules. By using environment information, the NNs can achieve a more refined mapping between the precoding matrix and the PMI compared with codebooks. The correlation between subbands is also used to further improve the feedback performance. Simulation results show that, for a single resource block (RB), the proposed architecture can save 25.0% - 40.0% of overhead compared with the Type I codebook under different antenna configurations. For a wideband system with 52 RBs, overhead can be saved by 30.7% and 48.0% compared with the Type II codebook when ignoring and considering extracting subband correlation, respectively.
引用
收藏
页码:935 / 950
页数:16
相关论文
共 50 条
  • [21] Machine Learning-Based CSI Feedback With Variable Length in FDD Massive MIMO
    Nerini, Matteo
    Rizzello, Valentina
    Joham, Michael
    Utschick, Wolfgang
    Clerckx, Bruno
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (05) : 2886 - 2900
  • [22] A Novel Deep Learning based CSI Feedback Approach for Massive MIMO Systems
    Li, Lun
    Wu, Hao
    Xiao, Huahua
    Liu, Lei
    Lu, Zhaohua
    Yu, Guanghui
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 56 - 60
  • [23] Enhancing Deep Learning Performance of Massive MIMO CSI Feedback
    Ji, Sijie
    Li, Mo
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4949 - 4954
  • [24] Deep Learning based CSI Reconstruction with Limited Feedback for Massive MIMO Systems
    Wang, Xin
    Hou, Xiaolin
    Chen, Lan
    Kishiyama, Yoshihisa
    Asai, Takahiro
    13TH INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND UBIQUITOUS NETWORK (ICMU2021), 2021,
  • [25] CSI Feedback Method Based on Deep Learning for FDD Massive MIMO Systems
    Liao Y.
    Yao H.-M.
    Hua Y.-X.
    Zhao Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (06): : 1182 - 1189
  • [26] Deep Learning-Based Antenna Selection and CSI Extrapolation in Massive MIMO Systems
    Lin, Bo
    Gao, Feifei
    Zhang, Shun
    Zhou, Ting
    Alkhateeb, Ahmed
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7669 - 7681
  • [27] Deep Learning-Based CSI Feedback for Beamforming in Single- and Multi-Cell Massive MIMO Systems
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) : 1872 - 1884
  • [28] LCF: A Deep Learning-Based Lightweight CSI Feedback Scheme for MIMO Networks
    Lee, Kyu-haeng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 5561 - 5580
  • [29] Deep learning-based massive MIMO channel estimation with reduced feedback
    Sadeghi, Nasser
    Azghani, Masoumeh
    DIGITAL SIGNAL PROCESSING, 2023, 137
  • [30] A Novel Compression CSI Feedback based on Deep Learning for FDD Massive MIMO Systems
    Wang, Yuting
    Zhang, Yibin
    Sun, Jinlong
    Gui, Guan
    Ohtsuki, Tomoaki
    Adachi, Fumiyuki
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,