Machine learning approach to fusion of high and low resolution imagery for improved target classification

被引:0
|
作者
Ilin, Roman [1 ]
机构
[1] Air Force Res Lab, Sensors Directorate, Wright Patterson AFB, OH 45433 USA
关键词
LUPI; SVM; Clustering; Object Classification;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
this work utilizes high resolution images in order to improve the classification accuracy on low resolution images. The approach is based on the machine learning paradigm called LUPI - "Learning Using Privileged Information". In this contribution, the LUPI paradigm is demonstrated on images from the Caltech 101 dataset.
引用
收藏
页码:195 / 199
页数:5
相关论文
共 50 条
  • [31] A COMPARISON OF FUSION TECHNIQUES IN HIGH RESOLUTION IMAGERY
    Canovas Garcia, Fulgencio
    Alonso Sarria, Francisco
    GEOFOCUS-REVISTA INTERNACIONAL DE CIENCIA Y TECNOLOGIA DE LA INFORMACION GEOGRAFICA, 2014, (14): : 144 - 162
  • [32] Fusion of Multispectral Aerial Imagery and Vegetation Indices for Machine Learning-Based Ground Classification
    Zhang, Yanchao
    Yang, Wen
    Sun, Ying
    Chang, Christine
    Yu, Jiya
    Zhang, Wenbo
    REMOTE SENSING, 2021, 13 (08)
  • [33] Target Detection in High Resolution SAR Imagery
    Chen Zhi-peng
    Xue Hui-feng
    PROCEEDINGS OF THE 2012 SECOND INTERNATIONAL CONFERENCE ON INSTRUMENTATION & MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2012), 2012, : 1065 - 1068
  • [34] An object-based classification approach for high-spatial resolution imagery
    Li, Xinliang
    Zhao, Shuhe
    Rui, Yikang
    Tang, Wei
    GEOINFORMATICS 2007: REMOTELY SENSED DATA AND INFORMATION, PTS 1 AND 2, 2007, 6752
  • [35] An object-oriented classification method of high resolution imagery based on improved AdaTree
    Zhang Xiaohe
    Zhai Liang
    Zhang Jixian
    Sang Huiyong
    35TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT (ISRSE35), 2014, 17
  • [36] AN IMPROVED OBJECT CNN METHOD FOR CLASSIFICATION OF HIGH-RESOLUTION REMOTE SENSING IMAGERY
    Li, Zhiqing
    Li, Erzhu
    Su, Zhigang
    Xu, Tianyu
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3167 - 3170
  • [37] Phase prediction of high-entropy alloys based on machine learning and an improved information fusion approach
    Chen, Cun
    Han, Xiaoli
    Zhang, Yong
    Liaw, Peter K.
    Ren, Jingli
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 239
  • [38] An Improved Approach for DSM Generation from High-Resolution Satellite Imagery
    Zhang, C.
    Fraser, C. S.
    JOURNAL OF SPATIAL SCIENCE, 2009, 54 (02) : 1 - 13
  • [39] Fusion of low resolution optical and high resolution SAR data for land cover classification
    Törmä, M
    Lumme, J
    Patrikainen, N
    Luojus, K
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 2680 - 2683
  • [40] Target Detection and Verification via Airborne Hyperspectral and High-Resolution Imagery Processing and Fusion
    Bar, Doron E.
    Wolowelsky, Karni
    Swirski, Yoram
    Figov, Zvi
    Michaeli, Ariel
    Vaynzof, Yana
    Abramovitz, Yoram
    Ben-Dov, Amnon
    Yaron, Ofer
    Weizman, Lior
    Adar, Renen
    IEEE SENSORS JOURNAL, 2010, 10 (03) : 707 - 711