Machine learning approach to fusion of high and low resolution imagery for improved target classification

被引:0
|
作者
Ilin, Roman [1 ]
机构
[1] Air Force Res Lab, Sensors Directorate, Wright Patterson AFB, OH 45433 USA
关键词
LUPI; SVM; Clustering; Object Classification;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
this work utilizes high resolution images in order to improve the classification accuracy on low resolution images. The approach is based on the machine learning paradigm called LUPI - "Learning Using Privileged Information". In this contribution, the LUPI paradigm is demonstrated on images from the Caltech 101 dataset.
引用
收藏
页码:195 / 199
页数:5
相关论文
共 50 条
  • [21] Fusion of high resolution radar and low resolution multi-spectral optical imagery
    Mercer, JB
    Edwards, D
    Maduck, J
    Hong, G
    Zhang, Y
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 3931 - 3934
  • [22] MACHINE LEARNING BASED ROAD DETECTION FROM HIGH RESOLUTION IMAGERY
    Lv, Ye
    Wang, Guofeng
    Hu, Xiangyun
    XXIII ISPRS CONGRESS, COMMISSION III, 2016, 41 (B3): : 891 - 898
  • [23] A Machine Learning Approach Based on Indoor Target Positioning by Using Sensor Data Fusion and Improved Cosine Similarity
    Ustebay, Serpil
    Turgut, Zeynep
    Odabasi, Safak Durukan
    Aydin, Muhammed Ali
    Sertbas, Ahmet
    ELECTRICA, 2024, 24 (01): : 218 - 227
  • [24] Motor Imagery EEG Signal Processing and Classification using Machine Learning Approach
    Sreeja, S. R.
    Rabha, Joytirmoy
    Nagarjuna, K. Y.
    Samanta, Debasis
    Mitra, Pabitra
    Sarma, Monalisa
    2017 INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2017, : 61 - 66
  • [25] Classification of Very High Spatial Resolution Imagery Based on the Fusion of Edge and Multispectral Information
    Huang, Xin
    Zhang, Liangpei
    Li, Pingxiang
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2008, 74 (12): : 1585 - 1596
  • [26] Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery
    Qian, Yuguo
    Zhou, Weiqi
    Yan, Jingli
    Li, Weifeng
    Han, Lijian
    REMOTE SENSING, 2015, 7 (01) : 153 - 168
  • [27] Object-based classification of earthquake damage from high-resolution optical imagery using machine learning
    Bialas, James
    Oommen, Thomas
    Rebbapragada, Umaa
    Levin, Eugene
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [28] Improved detection of clinically relevant fusion transcripts in cancer by machine learning classification
    Hafstao, Volundur
    Hakkinen, Jari
    Larsson, Malin
    Staaf, Johan
    Vallon-Christersson, Johan
    Persson, Helena
    BMC GENOMICS, 2023, 24 (01)
  • [29] Improved detection of clinically relevant fusion transcripts in cancer by machine learning classification
    Völundur Hafstað
    Jari Häkkinen
    Malin Larsson
    Johan Staaf
    Johan Vallon-Christersson
    Helena Persson
    BMC Genomics, 24
  • [30] A decision fusion approach for target classification
    Zhang, XH
    Lin, LJ
    Wang, JC
    INFORMATION INTELLIGENCE AND SYSTEMS, VOLS 1-4, 1996, : 667 - 671