Voltage coefficient of a piezoelectric nanocomposite energy harvester Modeling and experimental verification

被引:0
|
作者
Nafari, Alireza [1 ]
Sodano, Henry A. [1 ,2 ,3 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Macromol Sci & Engn, Ann Arbor, MI 48109 USA
关键词
Energy harvesting; Direct write; Nanocomposite; Finite element modeling (FEM); The Mori-Tanaka method; Piezoelectric; Nanowires; Voltage coefficient; NANOWIRE ARRAYS; COMPOSITES; TITANATE; ELEMENT; OUTPUT;
D O I
10.1117/12.2524518
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Piezoelectric nanocomposites composed of piezoelectric nanowires and flexible polymer have emerged as outstanding applications for flexible energy harvester. Although piezoelectric materials in their bulk form have high electromechanical coupling coefficient and can convert mechanical energy to electrical energy efficiently, they usually have low fracture toughness and are limited in applications due to difficulty in machining and casting it on to curve surfaces. Recently, additive manufacturing process (direct write) have been developed to incorporate piezoelectric nanowires into a polymer matrix with controlled alignment. It is shown that not only direct writing method can solve these issues but also it can improve the performance of the nanocomposite energy harvester significantly. In this paper, an experimentally verified finite element (FE) and micromechanics models are developed for calculation and optimization of g(31) voltage coefficient of a piezoelectric energy harvester nanocomposite. It is shown that, by using high aspect ratio nanowires with controlled alignment the g(31) coefficient can be enhanced more than five times compared to bulk form. Moreover, it is demonstrated that to achieve highest possible g(31) coefficient only a small volume fraction of nanowires is needed and further increase in volume fraction result in the reduction of g(31) coefficient.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate
    Aridogan, U.
    Basdogan, I.
    Erturk, A.
    SMART MATERIALS AND STRUCTURES, 2014, 23 (04)
  • [42] Electromechanical modeling and experimental analysis of a compression-based piezoelectric vibration energy harvester
    Jiang, X. Z.
    Li, Y. C.
    Wang, J.
    Li, J. C.
    INTERNATIONAL JOURNAL OF SMART AND NANO MATERIALS, 2014, 5 (03) : 152 - 168
  • [43] Modeling and experimental verification of a fan-folded vibration energy harvester for leadless pacemakers
    Ansari, M. H.
    Karami, M. Amin
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (09)
  • [44] Investigation and experimental verification of the effectiveness of the interfaced plate parameters on impact-based piezoelectric energy harvester
    Yan, N. X.
    Basari, A. A.
    Leong, K. S.
    Nawir, N. A. A.
    Hashimoto, S.
    CERAMICS INTERNATIONAL, 2018, 44 (15) : 17724 - 17734
  • [45] Analysis and experimental verification of electroacoustic wave energy harvesting in a coupled piezoelectric plate-harvester system
    Darabi, Amir
    Leamy, Michael J.
    SMART MATERIALS AND STRUCTURES, 2017, 26 (03)
  • [46] Application of PGD on Parametric Modeling of a Piezoelectric Energy Harvester
    Qin, Zhi
    Talleb, Hakeim
    Yan, Shuai
    Xu, Xiaoyu
    Ren, Zhuoxiang
    IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (11)
  • [47] Modeling and analysis of a rotational piezoelectric energy harvester with limiters
    Xiaobo Rui
    Zhoumo Zeng
    Yibo Li
    Yu Zhang
    Zi Yang
    Xinjing Huang
    Zhou Sha
    Journal of Mechanical Science and Technology, 2019, 33 : 5169 - 5176
  • [48] Modeling and analysis of a rotational piezoelectric energy harvester with limiters
    Rui, Xiaobo
    Zeng, Zhoumo
    Li, Yibo
    Zhang, Yu
    Yang, Zi
    Huang, Xinjing
    Sha, Zhou
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2019, 33 (11) : 5169 - 5176
  • [49] Stable compact modeling of piezoelectric energy harvester devices
    Yuan, Chengdong
    Hu, Siyang
    Bechtold, Tamara
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 39 (02) : 467 - 480
  • [50] Modeling and Design of a Piezoelectric Nonlinear Aeroelastic Energy Harvester
    Elahi, Hassan
    Eugeni, Marco
    Lampani, Luca
    Gaudenzi, Paolo
    INTEGRATED FERROELECTRICS, 2020, 211 (01) : 132 - 151