Voltage coefficient of a piezoelectric nanocomposite energy harvester Modeling and experimental verification

被引:0
|
作者
Nafari, Alireza [1 ]
Sodano, Henry A. [1 ,2 ,3 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Macromol Sci & Engn, Ann Arbor, MI 48109 USA
关键词
Energy harvesting; Direct write; Nanocomposite; Finite element modeling (FEM); The Mori-Tanaka method; Piezoelectric; Nanowires; Voltage coefficient; NANOWIRE ARRAYS; COMPOSITES; TITANATE; ELEMENT; OUTPUT;
D O I
10.1117/12.2524518
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Piezoelectric nanocomposites composed of piezoelectric nanowires and flexible polymer have emerged as outstanding applications for flexible energy harvester. Although piezoelectric materials in their bulk form have high electromechanical coupling coefficient and can convert mechanical energy to electrical energy efficiently, they usually have low fracture toughness and are limited in applications due to difficulty in machining and casting it on to curve surfaces. Recently, additive manufacturing process (direct write) have been developed to incorporate piezoelectric nanowires into a polymer matrix with controlled alignment. It is shown that not only direct writing method can solve these issues but also it can improve the performance of the nanocomposite energy harvester significantly. In this paper, an experimentally verified finite element (FE) and micromechanics models are developed for calculation and optimization of g(31) voltage coefficient of a piezoelectric energy harvester nanocomposite. It is shown that, by using high aspect ratio nanowires with controlled alignment the g(31) coefficient can be enhanced more than five times compared to bulk form. Moreover, it is demonstrated that to achieve highest possible g(31) coefficient only a small volume fraction of nanowires is needed and further increase in volume fraction result in the reduction of g(31) coefficient.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Modeling and experimental validation of a buckled compressive-mode piezoelectric energy harvester
    Li, Hai Tao
    Qin, Wei Yang
    Zu, Jean
    Yang, Zhengbao
    NONLINEAR DYNAMICS, 2018, 92 (04) : 1761 - 1780
  • [22] Design and Modeling of a Wideband MEMS-Based Energy Harvester with Experimental Verification
    Soliman, M. S. M.
    El-Saadany, E. F.
    Abdel-Rahman, E. M.
    Mansour, R. R.
    2008 1ST MICROSYSTEMS AND NANOELECTRONICS RESEARCH CONFERENCE, 2008, : 193 - +
  • [23] Analytical modeling and experimental verification of a S-shaped vibration energy harvester
    Mehdipour, I.
    Braghin, F.
    Lecis, N.
    Galassi, C.
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2016, VOL 2, 2016,
  • [24] Modeling and experimental verification of proof mass effects on vibration energy harvester performance
    Kim, Miso
    Hoegen, Mathias
    Dugundji, John
    Wardle, Brian L.
    SMART MATERIALS AND STRUCTURES, 2010, 19 (04)
  • [25] Modeling the performance of a micromachined piezoelectric energy harvester
    Ali B. Alamin Dow
    M. Schneider
    David Koo
    Hasan A. Al-Rubaye
    A. Bittner
    U. Schmid
    Nazir Kherani
    Microsystem Technologies, 2012, 18 : 1035 - 1043
  • [26] Modeling and Simulation of a Piezoelectric Vibration Energy Harvester
    Kundu, Sushanta
    Nemade, Harshal B.
    INTERNATIONAL CONFERENCE ON VIBRATION PROBLEMS 2015, 2016, 144 : 568 - 575
  • [27] Modeling the performance of a micromachined piezoelectric energy harvester
    Dow, Ali B. Alamin
    Schneider, M.
    Koo, David
    Al-Rubaye, Hasan A.
    Bittner, A.
    Schmid, U.
    Kherani, Nazir
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2012, 18 (7-8): : 1035 - 1043
  • [28] Modeling and Simulation of Volture Piezoelectric Energy Harvester
    Ali, Wahied G.
    Ibrahim, Sutrisno W.
    Telba, Ahmed
    2012 SEVENTH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS (ICCES'2012), 2012, : 221 - 226
  • [29] Experimental Study on a Piezoelectric Wind Energy Harvester
    Fang, Jianghai
    Jiang, Xiaoyu
    Wang, Shuyun
    Fei, Xiang
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON LOGISTICS, ENGINEERING, MANAGEMENT AND COMPUTER SCIENCE (LEMCS 2015), 2015, 117 : 150 - 153
  • [30] EXPERIMENTAL STUDY OF A PIEZOELECTRIC RING ENERGY HARVESTER
    Zhang, Xu-fang
    Hu, Shun-di
    Tzou, Horn-sen
    2013 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS (SPAWDA), 2013, : 340 - 343