Renormalization and tensor product states in spin chains and lattices

被引:308
|
作者
Cirac, J. Ignacio [1 ]
Verstraete, Frank [2 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Univ Vienna, Fak Phys, A-1090 Vienna, Austria
关键词
BOND GROUND-STATES; MATRIX; SYSTEMS; ALGORITHM;
D O I
10.1088/1751-8113/42/50/504004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review different descriptions of many-body quantum systems in terms of tensor product states. We introduce several families of such states in terms of the known renormalization procedures, and show that they naturally arise in that context. We concentrate on matrix product states, tree tensor states, multiscale entanglement renormalization ansatz and projected entangled pair states. We highlight some of their properties, and show how they can be used to describe a variety of systems.
引用
收藏
页数:34
相关论文
共 50 条
  • [42] Packing Problems, Dimensions and the Tensor Product of Complete Lattices
    Jaekel, Christian
    Schmidt, Stefan E.
    GRAPH-BASED REPRESENTATION AND REASONING (ICCS 2021), 2021, 12879 : 142 - 151
  • [44] Slopes of Euclidean lattices, tensor product and group actions
    Coulangeon, Renaud
    Nebe, Gabriele
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 235 (01) : 39 - 61
  • [45] Slopes of Euclidean lattices, tensor product and group actions
    Renaud Coulangeon
    Gabriele Nebe
    Israel Journal of Mathematics, 2020, 235 : 39 - 61
  • [46] Classical ground states of spin lattices
    Schmidt, Heinz-Juergen
    Richter, Johannes
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (46)
  • [47] Controlling sign problems in spin models using tensor renormalization
    Denbleyker, Alan
    Liu, Yuzhi
    Meurice, Y.
    Qin, M. P.
    Xiang, T.
    Xie, Z. Y.
    Yu, J. F.
    Zou, Haiyuan
    PHYSICAL REVIEW D, 2014, 89 (01):
  • [48] Matrix product simulations of non-equilibrium steady states of quantum spin chains
    Prosen, Tomaz
    Znidaric, Marko
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [49] Renormalization-group approach to weakly interacting spin chains
    Sznajd, J
    PHYSICAL REVIEW B, 2002, 66 (10)
  • [50] Quantum renormalization group approach to geometric phases in spin chains
    Jafari, R.
    PHYSICS LETTERS A, 2013, 377 (45-48) : 3279 - 3282