Renormalization and tensor product states in spin chains and lattices

被引:308
|
作者
Cirac, J. Ignacio [1 ]
Verstraete, Frank [2 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Univ Vienna, Fak Phys, A-1090 Vienna, Austria
关键词
BOND GROUND-STATES; MATRIX; SYSTEMS; ALGORITHM;
D O I
10.1088/1751-8113/42/50/504004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review different descriptions of many-body quantum systems in terms of tensor product states. We introduce several families of such states in terms of the known renormalization procedures, and show that they naturally arise in that context. We concentrate on matrix product states, tree tensor states, multiscale entanglement renormalization ansatz and projected entangled pair states. We highlight some of their properties, and show how they can be used to describe a variety of systems.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Renormalization approach to quasiperiodic quantum spin chains
    Physica A: Statistical and Theoretical Physics, 1995, 219 (1-2):
  • [22] Matrix product states for su(2) invariant quantum spin chains
    Zadourian, Rubina
    Fledderjohann, Andreas
    Kluemper, Andreas
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [23] Integrable open spin chains related to infinite matrix product states
    Basu-Mallick, B.
    Finkel, F.
    Gonzalez-Lopez, A.
    PHYSICAL REVIEW B, 2016, 93 (15)
  • [24] Matrix-product-states approach to Heisenberg ferrimagnetic spin chains
    Kolezhuk, AK
    Mikeska, HJ
    Yamamoto, S
    PHYSICAL REVIEW B, 1997, 55 (06) : R3336 - R3339
  • [25] THE TENSOR PRODUCT OF DISTRIBUTIVE LATTICES - STRUCTURAL RESULTS
    BELL, AM
    BROWN, MR
    FRASER, GA
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1984, 27 (OCT) : 237 - 245
  • [26] A non-capped tensor product of lattices
    Bogdan Chornomaz
    Algebra universalis, 2014, 72 : 323 - 348
  • [27] A non-capped tensor product of lattices
    Chornomaz, Bogdan
    ALGEBRA UNIVERSALIS, 2014, 72 (04) : 323 - 348
  • [28] Matrix-product-states approach to Heisenberg ferrimagnetic spin chains
    Kolezhuk, A. K.
    Mikeska, H.-J.
    Yamamoto, S.
    Physical Review B: Condensed Matter, 55 (06):
  • [29] THE SEMILATTICE TENSOR PRODUCT OF PROJECTIVE DISTRIBUTIVE LATTICES
    LAKSER, H
    ALGEBRA UNIVERSALIS, 1981, 13 (01) : 78 - 81
  • [30] ON THE MINIMAL NORM OF THE TENSOR PRODUCT OF 2 LATTICES
    BURNOL, JF
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (05): : 367 - 368