We analyze three finite difference approximations of the nonlinear Klein-Gordon equation and show that they are directly related to symplectic mappings. Two of the schemes, the Perring-Skyrme and Ablowitz-Kruskal-Ladik, are long established, and the third is a new, higher order accurate scheme. We test the schemes on traveling wave and periodic breather problems over long time intervals and compare their accuracy and computational costs with those of symplectic and nonsymplectic method-of-lines approximations and a nonsymplectic energy conserving method.
机构:
Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Apartado 55-534, Ciudad De Mexico, MexicoUniv Autonoma Metropolitana Iztapalapa, Dept Matemat, Apartado 55-534, Ciudad De Mexico, Mexico
Bengochea, G.
Verde-Star, L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Apartado 55-534, Ciudad De Mexico, MexicoUniv Autonoma Metropolitana Iztapalapa, Dept Matemat, Apartado 55-534, Ciudad De Mexico, Mexico
Verde-Star, L.
Ortigueira, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Elect Engn, CTS UNINOVA, Campus FCT UNL, P-2825149 Quinta Da Torre, Monte Da Capari, PortugalUniv Autonoma Metropolitana Iztapalapa, Dept Matemat, Apartado 55-534, Ciudad De Mexico, Mexico
机构:
Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, EnglandUniv Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
Waldron, Oliver
Van Gorder, Robert A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, EnglandUniv Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
机构:
Univ Paris 06, Lab Jacques Louis Lions, BC 187,4 Pl Jussieu, F-75252 Paris 05, FranceUniv Paris 06, Lab Jacques Louis Lions, BC 187,4 Pl Jussieu, F-75252 Paris 05, France