Neumann problem for the nonlinear Klein-Gordon equation

被引:7
|
作者
Naumkin, Ivan [1 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
关键词
Nonlinear Klein-Gordon equation; Neumann problem; Initial-boundary value problem; Scattering-critical; ONE SPACE DIMENSION; SMALL AMPLITUDE SOLUTIONS; GLOBAL EXISTENCE; SCATTERING; SYSTEMS;
D O I
10.1016/j.na.2016.10.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Neumann initial-boundary value problem for the nonlinear Klein-Gordon equation {v(tt) + v - v(xx) = mu v(3), (t, x) is an element of R+ x R+, v (0, x) = v(0)(x), v(t) (0, x) = v(1)(x), x is an element of R+, (0.1) (partial derivative(x)v) (t, 0) = h(t), t is an element of R+, for real mu, v(0) (x), v(1) (x) and h (t), is considered. We prove the global well-posedness for the initial boundary value problem (0.1) and we present a sharp time decay estimate of the solution in the uniform norm. Also we study the asymptotic behavior of the solution to (0.1). We show that the cubic nonlinearity in the Neumann initial boundary value problem (0.1) is scattering-critical. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:81 / 110
页数:30
相关论文
共 50 条
  • [1] A NONLINEAR KLEIN-GORDON EQUATION
    SCOTT, AC
    [J]. AMERICAN JOURNAL OF PHYSICS, 1969, 37 (01) : 52 - &
  • [2] Nonlinear Klein-Gordon equation
    Adomian, G
    [J]. APPLIED MATHEMATICS LETTERS, 1996, 9 (03) : 9 - 10
  • [3] THE INVERSE PROBLEM OF DYNAMICS FOR THE NONLINEAR KLEIN-GORDON EQUATION
    MASLOV, E
    [J]. INVERSE PROBLEMS, 1991, 7 (01) : L1 - L5
  • [4] Cauchy problem for the nonlinear Klein-Gordon equation coupled with the Maxwell equation
    Colin, Mathieu
    Watanabe, Tatsuya
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) : 778 - 796
  • [5] On nonlinear fractional Klein-Gordon equation
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    Baleanu, Dumitru
    [J]. SIGNAL PROCESSING, 2011, 91 (03) : 446 - 451
  • [6] Final state problem for the cubic nonlinear Klein-Gordon equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
  • [7] The Initial Value Problem for the Quadratic Nonlinear Klein-Gordon Equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2010, 2010
  • [8] The initial value problem for the cubic nonlinear Klein-Gordon equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2008, 59 (06): : 1002 - 1028
  • [9] Existence and uniqueness of an inverse problem for nonlinear Klein-Gordon equation
    Tekin, Ibrahim
    Mehraliyev, Yashar T.
    Ismailov, Mansur I.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (10) : 3739 - 3753
  • [10] Solitons for the Nonlinear Klein-Gordon Equation
    Bellazzini, J.
    Benci, V.
    Bonanno, C.
    Micheletti, A. M.
    [J]. ADVANCED NONLINEAR STUDIES, 2010, 10 (02) : 481 - 499