The Initial Value Problem for the Quadratic Nonlinear Klein-Gordon Equation

被引:1
|
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
机构
[1] Osaka Univ, Dept Math, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
[2] Inst Matemat, Morelia 58089, Michoacan, Mexico
关键词
SMALL AMPLITUDE SOLUTIONS; GLOBAL EXISTENCE; ASYMPTOTIC-BEHAVIOR; SCATTERING; TIME;
D O I
10.1155/2010/504324
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the initial value problem for the quadratic nonlinear Klein-Gordon equation Lu = < i partial derivative(x)>(-1-2)(2), (t, x) is an element of R x R, u(0, x) = u(0)(x), x is an element of R, where L = partial derivative(t) + i < i partial derivative(x)> and < i partial derivative(x)> = <(1 - partial derivative(2)(x))over bar>. Using the Shatah normal forms method, we obtain a sharp asymptotic behavior of small solutions without the condition of a compact support on the initial data which was assumed in the previous works.
引用
收藏
页数:35
相关论文
共 50 条