Moshinsky's shutter problem: an initial-value problem for the Klein-Gordon equation

被引:0
|
作者
Martin, P. A. [1 ]
Kowalski, F. V. [2 ]
机构
[1] Colorado Sch Mines, Dept Appl Math & Stat, Golden, CO 80401 USA
[2] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
关键词
Klein-Gordon equation; asymptotic analysis; method of stationary phase; non-uniqueness;
D O I
10.1080/00036811.2011.628942
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Moshinsky's problem is formulated and solved as a convolution integral. The initial data are discontinuous, giving the possibility of non-uniqueness. Asymptotic properties of the solution are deduced, using variants of the method of stationary phase. Comparisons are made with solutions of analogous problems for the one-dimensional wave equation and the Schrodinger equation.
引用
收藏
页码:309 / 322
页数:14
相关论文
共 50 条
  • [1] The Initial Value Problem for the Quadratic Nonlinear Klein-Gordon Equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2010, 2010
  • [2] The initial value problem for the cubic nonlinear Klein-Gordon equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2008, 59 (06): : 1002 - 1028
  • [3] An initial-boundary value problem of a nonlinear Klein-Gordon equation
    Wong, YS
    Chang, QS
    Gong, LG
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1997, 84 (01) : 77 - 93
  • [4] IMPACT PROBLEM FOR KLEIN-GORDON EQUATION
    REISS, EL
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1969, 17 (03) : 526 - &
  • [5] Neumann problem for the nonlinear Klein-Gordon equation
    Naumkin, Ivan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 149 : 81 - 110
  • [6] The initial value problem for the cubic nonlinear Klein–Gordon equation
    Nakao Hayashi
    Pavel I. Naumkin
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2008, 59 : 1002 - 1028
  • [7] ON THE INVERSION PROBLEM FOR A KLEIN-GORDON WAVE EQUATION
    DEALFARO, V
    [J]. NUOVO CIMENTO, 1958, 10 (04): : 675 - 681
  • [8] ON INVERSE PROBLEM FOR KLEIN-GORDON S-WAVE EQUATION
    DEGASPERIS, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (02) : 551 - +
  • [9] THE INVERSE PROBLEM OF KLEIN-GORDON EQUATION BOUNDARY VALUE PROBLEM AND ITS APPLICATION IN DATA ASSIMILATION
    Mu Xi-yu
    Xu Qi
    Cheng Hao
    Sun Kang-yuan
    Xu Fen
    Liu Guo-qing
    [J]. JOURNAL OF TROPICAL METEOROLOGY, 2019, 25 (01) : 92 - 101
  • [10] THE INVERSE PROBLEM OF KLEIN-GORDON EQUATION BOUNDARY VALUE PROBLEM AND ITS APPLICATION IN DATA ASSIMILATION
    慕熙昱
    徐琪
    程浩
    孙康远
    徐芬
    刘国庆
    [J]. Journal of Tropical Meteorology, 2019, 25 (01) : 92 - 101