Bayesian system identification via Markov chain Monte Carlo techniques

被引:70
|
作者
Ninness, Brett [1 ]
Henriksen, Soren [1 ]
机构
[1] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
基金
澳大利亚研究理事会;
关键词
Parameter estimation; System identification; Bayesian methods; Maximum likelihood; FINITE-SAMPLE PROPERTIES; BOOTSTRAP; MODELS;
D O I
10.1016/j.automatica.2009.10.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The work here explores new numerical methods for supporting a Bayesian approach to parameter estimation of dynamic systems. This is primarily motivated by the goal of providing accurate quantification of estimation error that is valid for arbitrary, and hence even very short length data records. The main innovation is the employment of the Metropolis-Hastings algorithm to construct an ergodic Markov chain with invariant density equal to the required posterior density. Monte Carlo analysis of samples from this chain then provides a means for efficiently and accurately computing posteriors for model parameters and arbitrary functions of them. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [1] Bayesian Computation Via Markov Chain Monte Carlo
    Craiu, Radu V.
    Rosenthal, Jeffrey S.
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 1, 2014, 1 : 179 - 201
  • [2] An Efficient Markov Chain Monte Carlo Method for Bayesian System Identification of Tower Structures
    Yang, Jia-Hua
    Lam, Heung-Fai
    [J]. PROCEEDINGS OF THE 25TH AUSTRALASIAN CONFERENCE ON MECHANICS OF STRUCTURES AND MATERIALS (ACMSM25), 2020, 37 : 975 - 983
  • [3] Bayesian phylogenetic inference via Markov chain Monte Carlo methods
    Mau, B
    Newton, MA
    Larget, B
    [J]. BIOMETRICS, 1999, 55 (01) : 1 - 12
  • [4] Bayesian Mixture Modelling in Geochronology via Markov Chain Monte Carlo
    Ajay Jasra
    David A. Stephens
    Kerry Gallagher
    Christopher C. Holmes
    [J]. Mathematical Geology, 2006, 38 : 269 - 300
  • [5] Bayesian Trend Filtering via Proximal Markov Chain Monte Carlo
    Heng, Qiang
    Zhou, Hua
    Chi, Eric C.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 938 - 949
  • [6] Bayesian mixture modelling in geochronology via Markov chain Monte Carlo
    Jasra, Ajay
    Stephens, David A.
    Gallagher, Kerry
    Holmes, Christopher C.
    [J]. MATHEMATICAL GEOLOGY, 2006, 38 (03): : 269 - 300
  • [7] System identification using evolutionary Markov chain Monte Carlo
    Zhang, BT
    Cho, DY
    [J]. JOURNAL OF SYSTEMS ARCHITECTURE, 2001, 47 (07) : 587 - 599
  • [8] Estimation and inference via Bayesian simulation: An introduction to Markov Chain Monte Carlo
    Jackman, S
    [J]. AMERICAN JOURNAL OF POLITICAL SCIENCE, 2000, 44 (02) : 375 - 404
  • [9] Bayesian estimation of NIG models via Markov chain Monte Carlo methods
    Karlis, D
    Lillestöl, J
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2004, 20 (04) : 323 - 338
  • [10] Reflections on Bayesian inference and Markov chain Monte Carlo
    Craiu, Radu, V
    Gustafson, Paul
    Rosenthal, Jeffrey S.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (04): : 1213 - 1227