A classical result of Birch claims that for given k, n integers, n-odd there exists some N = N(k, n) such that for an arbitrary n-homogeneous polynomial P on IRN there exists a linear subspace Y hooked right arrow IRN of dimension at least k, where the restriction of P is identically zero (we say that Y is a null space for P). Given n > 1 odd, and arbitrary real separable Banach space X (or more generally a space with w*-separable dual X*), we construct an n-homogeneous polynomial P with the property that for every point 0 not equal x is an element of X there exists some k is an element of IN such that every null space containing x ha's dimension at most k. In particular, P has no infinite dimensional null space. For a given n odd and a cardinal tau, we obtain a cardinal N = N(T, n) = exp(n+1) tau such that every n-homogeneous polynomial on a real Banach space X of density N has a null space of density tau.
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat PAB 1, RA-1428 Buenos Aires, DF, Argentina
Univ Buenos Aires, CONICET, IMAS, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat PAB 1, RA-1428 Buenos Aires, DF, Argentina
Cardeccia, Rodrigo
Muro, Santiago
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Rosario, Fac Ciencias Exactas Ingn & Agrimensura, Rosario, Santa Fe, Argentina
Univ Nacl Rosario, CIFASIS CONICET, Rosario, Santa Fe, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat PAB 1, RA-1428 Buenos Aires, DF, Argentina