Odd degree polynomials on real Banach spaces

被引:6
|
作者
Aron, Richard M. [1 ]
Hajek, Petr
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[3] Univ Complutense Madrid, Dept Anal Matemat, E-28040 Madrid, Spain
关键词
odd degree polynomials; zero sets;
D O I
10.1007/s11117-006-2035-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical result of Birch claims that for given k, n integers, n-odd there exists some N = N(k, n) such that for an arbitrary n-homogeneous polynomial P on IRN there exists a linear subspace Y hooked right arrow IRN of dimension at least k, where the restriction of P is identically zero (we say that Y is a null space for P). Given n > 1 odd, and arbitrary real separable Banach space X (or more generally a space with w*-separable dual X*), we construct an n-homogeneous polynomial P with the property that for every point 0 not equal x is an element of X there exists some k is an element of IN such that every null space containing x ha's dimension at most k. In particular, P has no infinite dimensional null space. For a given n odd and a cardinal tau, we obtain a cardinal N = N(T, n) = exp(n+1) tau such that every n-homogeneous polynomial on a real Banach space X of density N has a null space of density tau.
引用
收藏
页码:143 / 153
页数:11
相关论文
共 50 条
  • [21] On the zero-set of real polynomials in non-separable Banach spaces
    Ferrer, Jesus
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2007, 43 (03) : 685 - 697
  • [22] SEPARATING POLYNOMIALS ON BANACH-SPACES
    FABIAN, M
    PREISS, D
    WHITFIELD, JHM
    ZIZLER, VE
    QUARTERLY JOURNAL OF MATHEMATICS, 1989, 40 (160): : 409 - 422
  • [23] Polynomials on Banach spaces with unconditional bases
    Grecu, BC
    Ryan, RA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (04) : 1083 - 1091
  • [24] CONVERGENCE OF DIRICHLET POLYNOMIALS IN BANACH SPACES
    Defant, Andreas
    Sevilla Peris, Pablo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (02) : 681 - 697
  • [25] ON GEOMETRIC EXTENSION OF POLYNOMIALS ON BANACH SPACES
    Verkalets, N. B.
    Zagorodnyuk, A., V
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2013, 5 (02) : 196 - 198
  • [26] Norms of polynomials and capacities on Banach spaces
    Miguel Lacruz
    Integral Equations and Operator Theory, 1999, 34 : 494 - 499
  • [27] Symmetric polynomials on the product of Banach spaces
    Zagorodnyuk, A., V
    Kravtsiv, V. V.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2010, 2 (01) : 59 - 71
  • [28] Norms of polynomials and capacities on Banach spaces
    Lacruz, M
    MATHEMATICA SCANDINAVICA, 1999, 85 (02) : 271 - 277
  • [29] Orbits of homogeneous polynomials on Banach spaces
    Cardeccia, Rodrigo
    Muro, Santiago
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (06) : 1627 - 1655
  • [30] Norms of polynomials and capacities on Banach spaces
    Lacruz, M
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1999, 34 (04) : 494 - 499