Odd degree polynomials on real Banach spaces

被引:6
|
作者
Aron, Richard M. [1 ]
Hajek, Petr
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[3] Univ Complutense Madrid, Dept Anal Matemat, E-28040 Madrid, Spain
关键词
odd degree polynomials; zero sets;
D O I
10.1007/s11117-006-2035-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical result of Birch claims that for given k, n integers, n-odd there exists some N = N(k, n) such that for an arbitrary n-homogeneous polynomial P on IRN there exists a linear subspace Y hooked right arrow IRN of dimension at least k, where the restriction of P is identically zero (we say that Y is a null space for P). Given n > 1 odd, and arbitrary real separable Banach space X (or more generally a space with w*-separable dual X*), we construct an n-homogeneous polynomial P with the property that for every point 0 not equal x is an element of X there exists some k is an element of IN such that every null space containing x ha's dimension at most k. In particular, P has no infinite dimensional null space. For a given n odd and a cardinal tau, we obtain a cardinal N = N(T, n) = exp(n+1) tau such that every n-homogeneous polynomial on a real Banach space X of density N has a null space of density tau.
引用
收藏
页码:143 / 153
页数:11
相关论文
共 50 条
  • [1] Odd Degree Polynomials on Real Banach Spaces
    Richard M. Aron
    Petr Hájek
    Positivity, 2007, 11 : 143 - 153
  • [2] Polynomials and identities on real Banach spaces
    Hajek, Petr
    Kraus, Michal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) : 1015 - 1026
  • [3] Zeros of real polynomials on Banach spaces
    Llavona, JG
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2004, 41 (01) : 77 - 94
  • [4] Zeros of polynomials on Banach spaces: The real story
    Aron, RM
    Boyd, C
    Ryan, RA
    Zalduendo, I
    POSITIVITY, 2003, 7 (04) : 285 - 295
  • [5] Zeros of Polynomials on Banach Spaces: The Real Story
    R.M. Aron
    C. Boyd
    R.A. Ryan
    I. Zalduendo
    Positivity, 2003, 7 : 285 - 295
  • [6] Complexifications of real Banach spaces, polynomials and multilinear maps
    Munoz, GA
    Sarantopoulos, Y
    Tonge, A
    STUDIA MATHEMATICA, 1999, 134 (01) : 1 - 33
  • [7] Complexifications of polynomials and multilinear maps on real Banach spaces
    Muñoz, GA
    FUNCTION SPACES, PROCEEDINGS, 2000, 213 : 389 - 406
  • [8] Geometry of spaces of real polynomials of degree at most n
    Boyd, Christopher
    Brown, Anthony
    REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (04) : 1149 - 1171
  • [9] REDUCIBILITY OF POLYNOMIALS OF ODD DEGREE
    LLOYD, DB
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (10): : 1081 - +
  • [10] Symmetric polynomials on Banach spaces
    Chernega, I. V.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2009, 1 (02) : 214 - 233