Sparse inertially arbitrary patterns

被引:4
|
作者
Cavers, Michael S. [2 ]
Vander Meulen, Kevin N. [1 ]
Vanderspek, Loretta [3 ]
机构
[1] Redeemer Univ Coll, Dept Math, Ancaster, ON L9K 1J4, Canada
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Sign pattern; Nonzero pattern; Inertia; Spectrum; Potentially nilpotent; ZERO-NONZERO PATTERNS; SIGN PATTERNS; ORDER-4;
D O I
10.1016/j.laa.2009.06.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An n-by-n sign pattern A is a matrix with entries in {+, -, 0}. An n-by-n nonzero pattern A is a matrix with entries in {*,0} where * represents a nonzero entry. A pattern A is inertially arbitrary if for every set of nonnegative integers n(1), n(2), n(3) with n(1) + n(2) + n(3) = n there is a real matrix with pattern A having inertia (n(1), n(2), n(3)). We explore how the inertia of a matrix relates to the signs of the coefficients of its characteristic polynomial and describe the inertias allowed by certain sets of polynomials. This information is useful for describing the inertia of a pattern and can help show a pattern is inertially arbitrary. Britz et al. [T. Britz, J.J. McDonald, D.D. Olesky, R van den Driessche, Minimal spectrally arbitrary sign patterns, SIAM J. Matrix Anal. Appl. 26 (2004) 257-271] conjectured that irreducible spectrally arbitrary patterns must have at least 2n nonzero entries; we demonstrate that irreducible inertially arbitrary patterns can have less than 2n nonzero entries. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2024 / 2034
页数:11
相关论文
共 50 条
  • [42] Acoustic holograms for directing arbitrary cavitation patterns
    Kim, Jinwook
    Kasoji, Sandeep
    Durham, Phillip G.
    Dayton, Paul A.
    APPLIED PHYSICS LETTERS, 2021, 118 (05)
  • [43] Generating Microwave Spatial Fields With Arbitrary Patterns
    Zhao, Deshuang
    Zhu, Min
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2016, 15 : 1739 - 1742
  • [44] Realizing homology boundary links with arbitrary patterns
    Bellis, P
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (01) : 87 - 100
  • [45] Optimization of array boundaries for arbitrary footprint patterns
    Fondevila-Gómez, J
    Rodríguez-González, JA
    Trastoy, A
    Ares-Pena, F
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (02) : 635 - 637
  • [46] New classes of spectrally arbitrary ray patterns
    Gao, Yubin
    Shao, Yanling
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (10) : 2140 - 2148
  • [47] Algebraic conditions and the sparsity of spectrally arbitrary patterns
    Deaett, Louis
    Garnett, Colin
    SPECIAL MATRICES, 2021, 9 (01): : 257 - 274
  • [48] Arbitrary footprint patterns obtained by circular apertures
    Rodriguez, JA
    Trastoy, A
    Ares, F
    Moreno, E
    ELECTRONICS LETTERS, 2004, 40 (25) : 1565 - 1566
  • [49] A class of minimally spectrally arbitrary sign patterns
    Li, Xi
    Shao, Yanling
    Gao, Yubin
    ARS COMBINATORIA, 2012, 103 : 311 - 319
  • [50] A new family of spectrally arbitrary ray patterns
    Yinzhen Mei
    Yubin Gao
    Yanling Shao
    Peng Wang
    Czechoslovak Mathematical Journal, 2016, 66 : 1049 - 1058