Sparse inertially arbitrary patterns

被引:4
|
作者
Cavers, Michael S. [2 ]
Vander Meulen, Kevin N. [1 ]
Vanderspek, Loretta [3 ]
机构
[1] Redeemer Univ Coll, Dept Math, Ancaster, ON L9K 1J4, Canada
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Sign pattern; Nonzero pattern; Inertia; Spectrum; Potentially nilpotent; ZERO-NONZERO PATTERNS; SIGN PATTERNS; ORDER-4;
D O I
10.1016/j.laa.2009.06.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An n-by-n sign pattern A is a matrix with entries in {+, -, 0}. An n-by-n nonzero pattern A is a matrix with entries in {*,0} where * represents a nonzero entry. A pattern A is inertially arbitrary if for every set of nonnegative integers n(1), n(2), n(3) with n(1) + n(2) + n(3) = n there is a real matrix with pattern A having inertia (n(1), n(2), n(3)). We explore how the inertia of a matrix relates to the signs of the coefficients of its characteristic polynomial and describe the inertias allowed by certain sets of polynomials. This information is useful for describing the inertia of a pattern and can help show a pattern is inertially arbitrary. Britz et al. [T. Britz, J.J. McDonald, D.D. Olesky, R van den Driessche, Minimal spectrally arbitrary sign patterns, SIAM J. Matrix Anal. Appl. 26 (2004) 257-271] conjectured that irreducible spectrally arbitrary patterns must have at least 2n nonzero entries; we demonstrate that irreducible inertially arbitrary patterns can have less than 2n nonzero entries. (C) 2009 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:2024 / 2034
页数:11
相关论文
共 50 条
  • [21] A CLASS OF SPECTRALLY ARBITRARY RAY PATTERNS
    Jiangwu Deng
    Annals of Applied Mathematics, 2017, 33 (03) : 254 - 265
  • [22] Synthesis of planar Arrays with arbitrary geometry generating arbitrary footprint patterns
    Rodríguez, JA
    Muñoz, R
    Estévez, H
    Ares, F
    Moreno, E
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (09) : 2484 - 2488
  • [23] Bordering for spectrally arbitrary sign patterns
    Olesky, D. D.
    van den Driessche, P.
    Meulen, K. N. Vander
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 534 : 36 - 50
  • [24] Several spectrally arbitrary ray patterns
    Zhang, Ling
    Huang, Ting-Zhu
    Li, Zhongshan
    Zhang, Jing-Yue
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (04): : 543 - 564
  • [25] On determining minimal spectrally arbitrary patterns
    Cavers, MS
    Kim, IJ
    Shader, BL
    Vander Meulen, KN
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2005, 13 : 240 - 248
  • [26] A NOTE ON SPECTRALLY ARBITRARY SIGN PATTERNS
    Gao, Yubin
    Li, Zhongshan
    Shao, Yanling
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 11 (01): : 15 - 35
  • [27] HALFTONE PATTERNS FOR ARBITRARY SCREEN PERIODICITIES
    RAO, TS
    ARCE, GR
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1988, 5 (09): : 1502 - 1511
  • [28] Minimal spectrally arbitrary sign patterns
    Britz, T
    McDonald, JJ
    Olesky, DD
    van den Driessche, P
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) : 257 - 271
  • [29] Imaging interferometric lithography for arbitrary patterns
    Chen, XL
    Brueck, SRJ
    EMERGING LITHOGRAPHIC TECHNOLOGIES II, 1998, 3331 : 214 - 224
  • [30] On determining spectrally arbitrary sign patterns
    Shao, Yanling
    Gao, Yubin
    Advances in Matrix Theory and Applications, 2006, : 97 - 100