Sparse inertially arbitrary patterns

被引:4
|
作者
Cavers, Michael S. [2 ]
Vander Meulen, Kevin N. [1 ]
Vanderspek, Loretta [3 ]
机构
[1] Redeemer Univ Coll, Dept Math, Ancaster, ON L9K 1J4, Canada
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Sign pattern; Nonzero pattern; Inertia; Spectrum; Potentially nilpotent; ZERO-NONZERO PATTERNS; SIGN PATTERNS; ORDER-4;
D O I
10.1016/j.laa.2009.06.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An n-by-n sign pattern A is a matrix with entries in {+, -, 0}. An n-by-n nonzero pattern A is a matrix with entries in {*,0} where * represents a nonzero entry. A pattern A is inertially arbitrary if for every set of nonnegative integers n(1), n(2), n(3) with n(1) + n(2) + n(3) = n there is a real matrix with pattern A having inertia (n(1), n(2), n(3)). We explore how the inertia of a matrix relates to the signs of the coefficients of its characteristic polynomial and describe the inertias allowed by certain sets of polynomials. This information is useful for describing the inertia of a pattern and can help show a pattern is inertially arbitrary. Britz et al. [T. Britz, J.J. McDonald, D.D. Olesky, R van den Driessche, Minimal spectrally arbitrary sign patterns, SIAM J. Matrix Anal. Appl. 26 (2004) 257-271] conjectured that irreducible spectrally arbitrary patterns must have at least 2n nonzero entries; we demonstrate that irreducible inertially arbitrary patterns can have less than 2n nonzero entries. (C) 2009 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:2024 / 2034
页数:11
相关论文
共 50 条
  • [1] Spectrally and inertially arbitrary sign patterns
    Cavers, MS
    Vander Meulen, KN
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 394 : 53 - 72
  • [2] TECHNIQUES FOR IDENTIFYING INERTIALLY ARBITRARY PATTERNS
    Cavers, M. S.
    Garnett, C.
    Kim, I. -J
    Olesky, D. D.
    Van den Driessche, P.
    Vander Meulen, K. N.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 71 - 89
  • [3] Inertially arbitrary nonzero patterns of order 4
    Cavers, Michael S.
    Vander Meulen, Kevin N.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2007, 16 : 30 - 43
  • [4] Rational realizations of inertially arbitrary sign patterns
    Gao, Yu-Bin
    Shao, Yan-Ling
    Zhongbei Daxue Xuebao (Ziran Kexue Ban)/Journal of North University of China (Natural Science Edition), 2007, 28 (03): : 189 - 192
  • [5] Inertially arbitrary sign patterns with no nilpotent realization
    Kim, In-Jae
    Olesky, D. D.
    van den Driessche, P.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (2-3) : 264 - 283
  • [6] INERTIALLY ARBITRARY TREE SIGN PATTERNS OF ORDER 4
    Gao, Yubin
    Shao, Yanling
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 1148 - 1155
  • [7] REFINED INERTIALLY AND SPECTRALLY ARBITRARY ZERO-NONZERO PATTERNS
    Deaett, L.
    Olesky, D. D.
    van den Driessche, P.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 449 - 467
  • [8] SPARSE SPECTRALLY ARBITRARY PATTERNS
    Eastman, Brydon
    Shader, Bryan
    Meulen, Kevin N. Vander
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 28 : 83 - 98
  • [9] Inertially arbitrary pattern
    Gao, YB
    Shao, YL
    LINEAR & MULTILINEAR ALGEBRA, 2001, 49 (02): : 161 - 168
  • [10] Inertially arbitrary (2r-1)-diagonal sign patterns
    Miao, ZK
    Li, JS
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 357 (1-3) : 133 - 141