Nonlinear regression Huber-based divided difference filtering

被引:0
|
作者
Li, Wei [1 ]
Liu, Meihong [2 ]
机构
[1] Taiyuan Univ Technol, Dept Automat, Taiyuan, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear regression; Huber's technique; nonlinear filtering; robustness; divided difference filter; GLOBAL POSITION SYSTEM; ROBUST KALMAN FILTER; RELATIVE NAVIGATION; STATE ESTIMATION; TRACKING; EKF;
D O I
10.1177/0954410016642501
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This article derives a nonlinear regression Huber-based divided difference filtering algorithm using a nonlinear regression approach for dynamic state estimation problems with non-Gaussian noises and outliers. In this approach, the nonlinear measurement model is directly used without linear or statistically linear approximation and the Huber-based divided difference filtering problem is solved using a Gauss-Newton approach. This new proposed filter method is then applied to a benchmark problem of estimating the trajectory of an entry body from discrete-time range data measured by a radar tracking station. Simulation results demonstrate the superior performance of the proposed filter as compared to the previous filter algorithms in the presence of non-Gaussian uncertainties.
引用
收藏
页码:799 / 808
页数:10
相关论文
共 50 条
  • [41] Uncertain regression model based on Huber loss function
    Xie, Wenxuan
    Wu, Jiali
    Sheng, Yuhong
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (01) : 1169 - 1178
  • [42] Huber-based滤波在非合作航天器相对导航中的应用
    施常勇
    王向
    [J]. 航天控制, 2018, 36 (05) : 53 - 57
  • [43] Nonlinear noise filtering with support vector regression
    Zhang Jian
    Peng Qicong
    Shao Huaizong
    Shao Tiange
    [J]. ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 172 - 176
  • [44] Adaptive Regression Trees for Nonlinear Adaptive Filtering
    Worthen, Jarren T.
    Moon, Todd K.
    Gunther, Jacob H.
    [J]. 2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 376 - 379
  • [45] Linear and Nonlinear Regression-Based Maximum Correntropy Extended Kalman Filtering
    Liu, Xi
    Ren, Zhigang
    Lyu, Hongqiang
    Jiang, Zhihong
    Ren, Pengju
    Chen, Badong
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (05): : 3093 - 3102
  • [46] Nonlinear image processing and filtering: A unified approach based on vertically weighted regression
    Rafajlowicz, Ewaryst
    Pawlak, Miroslaw
    Steland, Angsar
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2008, 18 (01) : 49 - 61
  • [47] Parametric Lower Bound for Nonlinear Filtering based on Gaussian Process Regression Model
    Zhao, Yuxin
    Fritsche, Carsten
    Gunnarsson, Fredrik
    [J]. 2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 150 - 156
  • [48] Frozen divided difference scheme for solving systems of nonlinear equations
    Grau-Sanchez, Miquel
    Grau, Angela
    Noguera, Miquel
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (06) : 1739 - 1743
  • [49] Adaptive Divided Difference Filter for Nonlinear Systems with Unknown Noise
    Dey, Aritro
    Sadhu, Smita
    Ghoshal, T. K.
    [J]. 2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, ENERGY & COMMUNICATION (CIEC), 2014, : 573 - 577
  • [50] ADDITIVE DIVIDED DIFFERENCE FILTERING FOR ATTITUDE ESTIMATION USING MODIFIED RODRIGUES PARAMETERS
    Lee, Deok-Jin
    Alfriend, Kyle T.
    [J]. THE F. LANDIS MARKLEY ASTRONAUTICS SYMPOSIUM, 2008, 132 : 401 - 421