Finite automata presentable abelian groups

被引:11
|
作者
Nies, Andre [1 ]
Semukhin, Pavel [2 ]
机构
[1] Univ Auckland, Dept Comp Sci, Auckland 1, New Zealand
[2] Natl Univ Singapore, Dept Math, Singapore 117548, Singapore
关键词
Automatic structures; Torsion-free abelian groups;
D O I
10.1016/j.apal.2009.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give new examples of FA presentable torsion-free abelian groups. Namely, for every n >= 2, we construct a rank n indecomposable torsion-free abelian group which has an FA presentation. We also construct an FA presentation of the group (Z, +)(2) in which every nontrivial cyclic subgroup is not FA recognizable. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:458 / 467
页数:10
相关论文
共 50 条
  • [31] Self-similarity of cellular automata on abelian groups
    [J]. Nesme, V. (nesme@qipc.org), 1600, Old City Publishing, 628 North 2nd Street, Philadelphia, PA 19123, United States (07):
  • [32] Geometrical Representation of Automata over Some Abelian Groups
    Gan, Y. S.
    Fong, W. H.
    Sarmin, N. H.
    Turaev, S.
    [J]. MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2012, 8 (01): : 24 - 30
  • [33] Self-similarity of Cellular Automata on Abelian Groups
    Guetschow, Johannes
    Nesme, Vincent
    Werner, Reinhard F.
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2012, 7 (02) : 83 - 113
  • [34] Difference bases in finite Abelian groups
    Taras Banakh
    Volodymyr Gavrylkiv
    [J]. Acta Scientiarum Mathematicarum, 2019, 85 : 119 - 137
  • [35] ON A PARTITION PROBLEM OF FINITE ABELIAN GROUPS
    Qu, Zhenhua
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (01) : 24 - 31
  • [36] On the Heyde Theorem for Finite Abelian Groups
    G. M. Feldman
    [J]. Journal of Theoretical Probability, 2004, 17 : 929 - 941
  • [37] Complete factorizations of finite abelian groups
    Chin, A. Y. M.
    Wang, K. L.
    Wong, K. B.
    [J]. JOURNAL OF ALGEBRA, 2023, 628 : 509 - 523
  • [38] Formal duality in finite abelian groups
    Li, Shuxing
    Pott, Alexander
    Schueler, Robert
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 162 : 354 - 405
  • [39] On hyper (abelian of finite rank) groups
    Wehrfritz, B. A. F.
    [J]. ALGEBRA COLLOQUIUM, 2008, 15 (03) : 361 - 370
  • [40] On the Heyde theorem for finite Abelian groups
    Feldman, GM
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (04) : 929 - 941