THREE-DIMENSIONAL ALMOST KENMOTSU MANIFOLDS WITH η-PARALLEL RICCI TENSOR

被引:11
|
作者
Wang, Yaning [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
3-dimensional almost Kenmotsu manifold; eta-parallel parallel Ricci tensor; non-unimodular Lie group; CONTACT; 3-MANIFOLDS; LOCAL SYMMETRY;
D O I
10.4134/JKMS.j160252
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the Ricci tensor of a three-dimensional almost Kenmotsu manifold satisfying. del(xi)h = 0, h not equal 0, is eta-parallel if and only if the manifold is locally isometric to either the Riemannian product H-2(-4) x R or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure.
引用
收藏
页码:793 / 805
页数:13
相关论文
共 50 条
  • [41] The Ricci tensor of almost parahermitian manifolds
    Conti, Diego
    Rossi, Federico A.
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 53 (04) : 467 - 501
  • [42] η -Ricci-Bourguignon solitons on three-dimensional (almost) coKähler manifolds
    Mandal, Tarak
    De, Uday Chand
    Sarkar, Avijit
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [43] The Ricci tensor of almost parahermitian manifolds
    Diego Conti
    Federico A. Rossi
    [J]. Annals of Global Analysis and Geometry, 2018, 53 : 467 - 501
  • [44] Almost *-η-Ricci solitons on Kenmotsu pseudo-Riemannian manifolds
    Rashmi, S. V. Divya
    Venkatesha, V.
    [J]. ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2022, 42 (04): : 241 - 250
  • [45] Characterization of Almost η-Ricci-Yamabe Soliton and Gradient Almost η-Ricci-Yamabe Soliton on Almost Kenmotsu Manifolds
    Mondal, Somnath
    Dey, Santu
    Bhattacharyya, Arindam
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (04) : 728 - 748
  • [46] ON THREE DIMENSIONAL COSYMPLECTIC MANIFOLDS ADMITTING ALMOST RICCI SOLITONS
    De, Uday Chand
    Dey, Chiranjib
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2020, 51 (04): : 303 - 312
  • [47] Three-Dimensional Riemannian Manifolds and Ricci Solitons
    Chaubey, Sudhakar K.
    De, Uday Chand
    [J]. QUAESTIONES MATHEMATICAE, 2022, 45 (05) : 765 - 778
  • [48] Ricci flow on three-dimensional manifolds with symmetry
    Lott, John
    Sesum, Natasa
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (01) : 1 - 32
  • [49] Characterization of almost *-conformal η-Ricci soliton on para-Kenmotsu manifolds
    Dey, Santu
    Uddin, Siraj
    [J]. FILOMAT, 2023, 37 (11) : 3601 - 3614
  • [50] Geometric characterizations of almost Ricci-Bourguignon solitons on Kenmotsu manifolds
    Prakasha, D. G.
    Amruthalakshmi, M. R.
    Suh, Young Jin
    [J]. FILOMAT, 2024, 38 (03) : 861 - 871