Exploring JLA supernova data with improved flux-averaging technique

被引:15
|
作者
Wang, Shuang [1 ]
Wen, Sixiang [1 ]
Li, Miao [1 ]
机构
[1] Sun Yat Sen Univ, Sch Phys & Astron, Univ Rd 2, Zhuhai, Peoples R China
关键词
dark energy theory; supernova type Ia - standard candles; DARK-ENERGY CONSTRAINTS; IA SUPERNOVAE; COSMOLOGICAL CONSTRAINTS; LIGHT CURVES; MODEL; SPECTRA; BETA;
D O I
10.1088/1475-7516/2017/03/037
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work, we explore the cosmological consequences of the "Joint Light-curve Analysis" (JLA) supernova (SN) data by using an improved flux-averaging (FA) technique, in which only the type Ia supernovae (SNe Ia) at high redshift are flux -averaged. Adopting the criterion of figure of Merit (FoM) and considering six dark energy (DE) parameterizations, we search the best FA recipe that gives the tightest DE constraints in the (z(cut,) Delta z) plane, where z(cut) and Delta z are redshift cut-off and redshift interval of FA, respectively. Then, based on the best FA recipe obtained, we discuss the impacts of varying zcut and varying Az, revisit the evolution of SN color luminosity parameter beta, and study the effects of adopting different FA recipe on parameter estimation. We find that: (1) The best FA recipe is (z(cut) = 0.6, Delta z = 0.06), which is insensitive to a specific DE parameterization. (2) Flux-averaging JLA samples at z(cut) >= 0.4 will yield tighter DE constraints than the case without using FA. (3) Using FA can significantly reduce the redshift-evolution of beta. (4) The best FA recipe favors a larger fractional matter density Qrn. In summary, we present an alternative method of dealing with JLA data, which can reduce the systematic uncertainties of SNe Ia and give the tighter DE constraints at the same time. Our method will be useful in the use of SNe Ia data for precision cosmology.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Flux-averaging analysis of type Ia supernova data
    Wang, Y
    [J]. ASTROPHYSICAL JOURNAL, 2000, 536 (02): : 531 - 539
  • [2] Model-independent constraints on dark energy density from flux-averaging analysis of type Ia supernova data
    Wang, Y
    Mukherjee, P
    [J]. ASTROPHYSICAL JOURNAL, 2004, 606 (02): : 654 - 663
  • [3] Short-time calculations of resonant tunneling probabilities by the flux-averaging method
    Berman, LH
    Peskin, U
    [J]. CHEMICAL PHYSICS LETTERS, 2002, 360 (3-4) : 374 - 381
  • [4] Adaptive array utilising improved spatial averaging technique
    Serebryakov, GV
    [J]. ELECTRONICS LETTERS, 2000, 36 (05) : 471 - 472
  • [5] Improved conditional averaging technique for plasma fluctuation diagnostics
    Teliban, I.
    Block, D.
    Piel, A.
    Greiner, F.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (04) : 485 - 497
  • [6] Improved differential averaging technique for comparison decrement method
    Liu, JC
    Chung, JC
    Chou, HC
    [J]. IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 1997, 144 (05) : 377 - 381
  • [7] A segmented data-weighted-averaging technique
    Zhang, Zhenyong
    Ternes, Gabor C.
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 481 - 484
  • [8] Upper limits on the diffuse supernova neutrino flux from the SuperKamiokande data
    Lunardini, Cecilia
    Peres, Orlando L. G.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2008, (08):
  • [9] Exploring the relativistic regime with Newtonian hydrodynamics:: an improved effective gravitational potential for supernova simulations
    Marek, A
    Dimmelmeier, H
    Janka, HT
    Müller, E
    Buras, R
    [J]. ASTRONOMY & ASTROPHYSICS, 2006, 445 (01): : 273 - U103
  • [10] Improved constraints on cosmological parameters from Type Ia supernova data
    March, M. C.
    Trotta, R.
    Berkes, P.
    Starkman, G. D.
    Vaudrevange, P. M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 418 (04) : 2308 - 2329