Flux-averaging analysis of type Ia supernova data

被引:101
|
作者
Wang, Y [1 ]
机构
[1] Princeton Univ Observ, Princeton, NJ 08544 USA
来源
ASTROPHYSICAL JOURNAL | 2000年 / 536卷 / 02期
关键词
cosmology : observations; distance scale; supernovae : general;
D O I
10.1086/308958
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Because of flux conservation, flux-averaging justifies the use of the distance-redshift relation for a smooth universe in the analysis of Type Ia supernova (SN Ia) data. We have combined the SN Ia data from the High-z SN Search and the Supernova Cosmology Project and binned the combined data by flux-averaging in redshift intervals of Delta z = 0.05 and Delta z = 0.1. We find that the unbinned data yield a Hubble constant of H-0 = 65 +/- 1 km s(-1) Mpc(-1) (statistical error only), a matter density fraction of Omega(m) = 0.7 +/- 0.4, and a vacuum energy density fraction of Omega(Lambda) = 1.2 +/- 0.5. The binned data for Delta z = 0.1 yield H-0 = 65 +/- 1 km s(-1) Mpc(-1) (statistical error only), Omega(m) = 0.3 +/- 0.6, and Omega(Lambda) = 0.7 +/- 0.7. Our results are not sensitive to the redshift bin size. Flux-averaging leads to less biased estimates of the cosmological parameters by reducing the bias due to systematic effects such as weak lensing. Comparison of the data of 18 SNe Ia published by both groups yields a mean SN Ia peak absolute magnitude of M-B = -19.33 +/- 0.25. The internal dispersion of each data set is about 0.20 mag in the calibrated SN Ia peak absolute magnitudes. The difference in analysis techniques introduces an additional uncertainty of about 0.15 mag. If the SNe Ia peak absolute luminosity changes with redshift due to evolution, our ability to measure the cosmological parameters from SN Ia data will be significantly diminished. Assuming power-law evolution in the peak absolute luminosity, (1 + z)(beta), we find a strong degeneracy between the evolution power-law index beta and the matter density fraction Omega(m). For Omega(m) = 0.3, we find that the unbinned data yield H-0 = 65 +/- 1 km s(-1) Mpc(-1) (statistical error only), Omega(Lambda) = 1.4 +/- 1.1, and beta = 0.5 +/- 1.6, and the binned data (with Delta z = 0.1) yield H-0 = 65 +/- 1 km s(-1) Mpc(-1) (statistical error only), Omega(Lambda) = 0.6 +/- 1.4, and beta = 0.0 +/- 1.0.
引用
收藏
页码:531 / 539
页数:9
相关论文
共 50 条
  • [1] Model-independent constraints on dark energy density from flux-averaging analysis of type Ia supernova data
    Wang, Y
    Mukherjee, P
    [J]. ASTROPHYSICAL JOURNAL, 2004, 606 (02): : 654 - 663
  • [2] Exploring JLA supernova data with improved flux-averaging technique
    Wang, Shuang
    Wen, Sixiang
    Li, Miao
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (03):
  • [3] Bayesian analysis of type Ia supernova data
    Wang, XF
    Zhou, X
    Li, ZW
    Chen, L
    [J]. CHINESE PHYSICS LETTERS, 2003, 20 (10) : 1903 - 1906
  • [4] Analysis of two quintessence models with type Ia supernova data
    Pavlov, M
    Rubano, C
    Sazhin, M
    Scudellaro, P
    [J]. ASTROPHYSICAL JOURNAL, 2002, 566 (02): : 619 - 622
  • [5] χ2 versus median statistics in supernova type Ia data analysis
    Barreira, A.
    Avelino, P. P.
    [J]. PHYSICAL REVIEW D, 2011, 84 (08)
  • [6] Modified median statistics and type Ia supernova data
    Avelino, PP
    Martins, CJAP
    Pinto, P
    [J]. ASTROPHYSICAL JOURNAL, 2002, 575 (02): : 989 - 995
  • [7] Short-time calculations of resonant tunneling probabilities by the flux-averaging method
    Berman, LH
    Peskin, U
    [J]. CHEMICAL PHYSICS LETTERS, 2002, 360 (3-4) : 374 - 381
  • [8] Cosmic Type Ia supernova rate and constraints on supernova Ia progenitors
    [J]. Palicio, P.A. (pedro.alonso-palicio@oca.eu), 1600, EDP Sciences (689):
  • [9] Analysis of recent type Ia supernova data based on evolving dark energy models
    Park, Jaehong
    Park, Chan-Gyung
    Hwang, Jai-chan
    [J]. PHYSICAL REVIEW D, 2011, 84 (02):
  • [10] The progenitors of type Ia supernova
    Tout, CA
    [J]. Astrophysics of Cataclysmic Variables and Related Objects, 2005, 330 : 279 - 292