konfound: Command to quantify robustness of causal inferences

被引:96
|
作者
Xu, Ran [1 ]
Frank, Kenneth A. [2 ]
Maroulis, Spiro J. [3 ]
Rosenberg, Joshua M. [4 ]
机构
[1] Virginia Tech, Dept Ind & Syst Engn, Falls Church, VA 22043 USA
[2] Michigan State Univ, Dept Counseling Educ Psychol & Special Educ, E Lansing, MI 48824 USA
[3] Arizona State Univ, Sch Publ Affairs, Tempe, AR USA
[4] Univ Tennessee, Coll Educ Hlth & Human Sci, Knoxville, TN USA
来源
STATA JOURNAL | 2019年 / 19卷 / 03期
关键词
st0565; konfound; mkonfound; pkonfound; causal inferences; bias; confounding; robustness or sensitivity analyses; SENSITIVITY-ANALYSIS; BIAS FORMULAS; SCHOOL; IMPACT; TRANSITIONS; PERFORMANCE; INCENTIVES; OWNERSHIP; NETWORKS;
D O I
10.1177/1536867X19874223
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Statistical methods that quantify the discourse about causal inferences in terms of possible sources of biases are becoming increasingly important to many social-science fields such as public policy, sociology, and education. These methods are also known as "robustness or sensitivity analyses". A series of recent works (Frank [2000, Sociological Methods and Research 29: 147-194]; Pan and Frank [2003, Journal of Educational and Behavioral Statistics 28: 315- 337]; Frank and Min [2007, Sociological Methodology 37: 349-392]; and Frank et al. [2013, Educational Evaluation and Policy Analysis 35: 437-460]) on robustness analysis extends earlier methods. We implement these recent developments in Stata. In particular, we provide commands to quantify the percent bias necessary to invalidate an inference from a Rubin causal model framework and the robustness of causal inferences in terms of correlations associated with unobserved variables.
引用
收藏
页码:523 / 550
页数:28
相关论文
共 50 条
  • [41] Profile Matching for the Generalization and Personalization of Causal Inferences
    Cohn, Eric R.
    Zubizarreta, Jose R.
    [J]. EPIDEMIOLOGY, 2022, 33 (05) : 678 - 688
  • [42] CAUSAL INFERENCES IN NONEXPERIMENTAL RESEARCH - BLALOCK,HM
    MCGINNIS, R
    [J]. SOCIAL FORCES, 1966, 44 (04) : 584 - 586
  • [43] Inverse Percolation to Quantify Robustness in Multiplex Networks
    Montes-Orozco, Edwin
    Mora-Gutierrez, Roman-Anselmo
    Obregon-Quintana, Bibiana
    de-los-Cobos-Silva, Sergio-G
    Rincon-Garcia, Eric A.
    Lara-Velazquez, Pedro
    Gutierrez-Andrade, Miguel A.
    [J]. COMPLEXITY, 2020, 2020
  • [44] A new approach to quantify the robustness of bioprocess performance
    Kim, H
    King, JMP
    Titchener-Hooker, NJ
    Zhou, YH
    [J]. JOURNAL OF BIOTECHNOLOGY, 2005, 118 : S36 - S37
  • [45] Making Causal Inferences From Observational Databases?
    Kashner, T. Michael
    [J]. AMERICAN JOURNAL OF PSYCHIATRY, 2016, 173 (12): : 1161 - 1162
  • [46] CAUSAL INFERENCES DURING THE READING OF EXPOSITORY TEXTS
    NOORDMAN, LGM
    VONK, W
    KEMPFF, HJ
    [J]. JOURNAL OF MEMORY AND LANGUAGE, 1992, 31 (05) : 573 - 590
  • [47] CAUSAL AND ASSOCIATIVE CONSTRAINTS IN THE GENERATION OF BRIDGING INFERENCES
    VANDENBROEK, P
    RISDEN, K
    HUSEBYE, E
    [J]. BULLETIN OF THE PSYCHONOMIC SOCIETY, 1992, 30 (06) : 482 - 482
  • [48] CAUSAL INFERENCES - CAN CAUTION HAVE LIMITS
    WELCH, S
    [J]. CROSSROADS OF SOCIAL SCIENCE : THE ICPSR 25TH ANNIVERSARY VOLUME, 1989, : 141 - 145
  • [49] Genetic correlations and causal inferences in ischemic stroke
    Huan Cai
    Biyang Cai
    Zhonghua Liu
    Wenjun Wu
    Dihong Chen
    Liang Fang
    Liyi Chen
    Wen Sun
    Jialin Liang
    Hao Zhang
    [J]. Journal of Neurology, 2020, 267 : 1980 - 1990
  • [50] CAUSAL INFERENCES IN NONEXPERIMENTAL RESEARCH - BLALOCK,HM
    DRIESSEL, AB
    [J]. JOURNAL OF COMMUNICATION, 1965, 15 (03) : 193 - 194