konfound: Command to quantify robustness of causal inferences

被引:96
|
作者
Xu, Ran [1 ]
Frank, Kenneth A. [2 ]
Maroulis, Spiro J. [3 ]
Rosenberg, Joshua M. [4 ]
机构
[1] Virginia Tech, Dept Ind & Syst Engn, Falls Church, VA 22043 USA
[2] Michigan State Univ, Dept Counseling Educ Psychol & Special Educ, E Lansing, MI 48824 USA
[3] Arizona State Univ, Sch Publ Affairs, Tempe, AR USA
[4] Univ Tennessee, Coll Educ Hlth & Human Sci, Knoxville, TN USA
来源
STATA JOURNAL | 2019年 / 19卷 / 03期
关键词
st0565; konfound; mkonfound; pkonfound; causal inferences; bias; confounding; robustness or sensitivity analyses; SENSITIVITY-ANALYSIS; BIAS FORMULAS; SCHOOL; IMPACT; TRANSITIONS; PERFORMANCE; INCENTIVES; OWNERSHIP; NETWORKS;
D O I
10.1177/1536867X19874223
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Statistical methods that quantify the discourse about causal inferences in terms of possible sources of biases are becoming increasingly important to many social-science fields such as public policy, sociology, and education. These methods are also known as "robustness or sensitivity analyses". A series of recent works (Frank [2000, Sociological Methods and Research 29: 147-194]; Pan and Frank [2003, Journal of Educational and Behavioral Statistics 28: 315- 337]; Frank and Min [2007, Sociological Methodology 37: 349-392]; and Frank et al. [2013, Educational Evaluation and Policy Analysis 35: 437-460]) on robustness analysis extends earlier methods. We implement these recent developments in Stata. In particular, we provide commands to quantify the percent bias necessary to invalidate an inference from a Rubin causal model framework and the robustness of causal inferences in terms of correlations associated with unobserved variables.
引用
收藏
页码:523 / 550
页数:28
相关论文
共 50 条
  • [21] Causal Inferences in the Campbellian Validity System
    Lund, Thorleif
    [J]. SCANDINAVIAN JOURNAL OF EDUCATIONAL RESEARCH, 2010, 54 (03) : 205 - 220
  • [22] INFERENCES TO CAUSAL RELEVANCE FROM EXPERIMENTS
    Grasshoff, Gerd
    [J]. EXPLANATION, PREDICTION, AND CONFIRMATION, 2011, 2 : 167 - 182
  • [23] The impact of presentation format on causal inferences
    Vallee-Tourangeau, Frdric
    Payton, Teresa
    Murphy, Robin A.
    [J]. EUROPEAN JOURNAL OF COGNITIVE PSYCHOLOGY, 2008, 20 (01): : 177 - 194
  • [24] HUME SKEPTICISM ABOUT CAUSAL INFERENCES
    BROUGHTON, J
    [J]. PACIFIC PHILOSOPHICAL QUARTERLY, 1983, 64 (01): : 3 - 18
  • [25] CAUSAL AND DIAGNOSTIC INFERENCES - A COMPARISON OF VALIDITY
    BURNS, M
    PEARL, J
    [J]. ORGANIZATIONAL BEHAVIOR AND HUMAN PERFORMANCE, 1981, 28 (03): : 379 - 394
  • [26] Improving Causal Inferences in Risk Analysis
    Cox, Louis Anthony , Jr.
    [J]. RISK ANALYSIS, 2013, 33 (10) : 1762 - 1771
  • [27] WEAK ASSOCIATIONS, BIAS, AND CAUSAL INFERENCES
    WEED, DL
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 1989, 130 (04) : 819 - 819
  • [28] THE ASSUMPTIONS ON WHICH CAUSAL INFERENCES REST
    STONE, R
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1993, 55 (02): : 455 - 466
  • [29] HUME SKEPTICISM ABOUT CAUSAL INFERENCES
    BROUGHTON, J
    [J]. JOURNAL OF PHILOSOPHY, 1980, 77 (11): : 767 - 768
  • [30] Causal inferences from many experiments
    Cho, Wendy K. Tam
    [J]. JOURNAL OF APPLIED STATISTICS, 2017, 44 (16) : 2908 - 2922