Magnetism in curved geometries

被引:31
|
作者
Streubel, Robert [1 ,2 ,3 ]
Tsymbal, Evgeny Y. [1 ,2 ]
Fischer, Peter [3 ,4 ]
机构
[1] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[2] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] UC Santa Cruz, Phys Dept, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
DZYALOSHINSKII-MORIYA INTERACTION; REAL-SPACE OBSERVATION; RAY CIRCULAR-DICHROISM; TO-CHARGE CONVERSION; DOMAIN-WALL MOTION; ROOM-TEMPERATURE; SKYRMION LATTICE; SPIN TEXTURE; THIN-FILMS; DYNAMICS;
D O I
10.1063/5.0054025
中图分类号
O59 [应用物理学];
学科分类号
摘要
Curvature impacts physical properties across multiple length scales, ranging from the macroscopic scale, where the shape and size vary drastically with the curvature, to the nanoscale at interfaces and inhomogeneities in materials with structural, chemical, electronic, and magnetic short-range order. In quantum materials, where correlations, entanglement, and topology dominate, the curvature opens the path to novel characteristics and phenomena that have recently emerged and could have a dramatic impact on future fundamental and applied studies of materials. Particularly, magnetic systems hosting non-collinear and topological states and 3D magnetic nanostructures strongly benefit from treating curvature as a new design parameter to explore prospective applications in the magnetic field and stress sensing, microrobotics, and information processing and storage. This Perspective gives an overview of recent progress in synthesis, theory, and characterization studies and discusses future directions, challenges, and application potential of the harnessing curvature for 3D nanomagnetism.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Transitions between phyllotactic lattice states in curved geometries
    H. S. Ansell
    A. A. Tomlinson
    N. K. Wilkin
    [J]. Scientific Reports, 10
  • [32] Low-dimensional quantum gases in curved geometries
    Andrea Tononi
    Luca Salasnich
    [J]. Nature Reviews Physics, 2023, 5 : 398 - 406
  • [33] Chiral modulations in curved space II: conifold geometries
    Flachi, Antonino
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (01):
  • [34] Tool deflection compensation in peripheral milling of curved geometries
    Rao, V. S.
    Rao, P. V. M.
    [J]. INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2006, 46 (15): : 2036 - 2043
  • [35] Transitions between phyllotactic lattice states in curved geometries
    Ansell, H. S.
    Tomlinson, A. A.
    Wilkin, N. K.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [36] Bouncing cosmologies in geometries with positively curved spatial sections
    Haro, Jaume
    [J]. PHYSICS LETTERS B, 2016, 760 : 605 - 610
  • [37] Chiral modulations in curved space II: conifold geometries
    Antonino Flachi
    [J]. Journal of High Energy Physics, 2012
  • [38] Low-dimensional quantum gases in curved geometries
    Tononi, Andrea
    Salasnich, Luca
    [J]. NATURE REVIEWS PHYSICS, 2023, 5 (07) : 398 - 406
  • [39] Enhanced microfluidic mixing using planar curved channel geometries
    Sudarsan, AP
    Ugaz, VM
    [J]. MICRO TOTAL ANALYSIS SYSTEMS 2004, VOL 1, 2005, (296): : 198 - 200
  • [40] Observation of Periodic Orbits on Curved Two-Dimensional Geometries
    Avlund, M.
    Ellegaard, C.
    Oxborrow, M.
    Guhr, T.
    Sondergaard, N.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (16)