机构:
Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USAUniv Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
Streubel, Robert
[1
,2
,3
]
Tsymbal, Evgeny Y.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USAUniv Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
Tsymbal, Evgeny Y.
[1
,2
]
Fischer, Peter
论文数: 0引用数: 0
h-index: 0
机构:
Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
UC Santa Cruz, Phys Dept, Santa Cruz, CA 95064 USAUniv Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
Fischer, Peter
[3
,4
]
机构:
[1] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[2] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] UC Santa Cruz, Phys Dept, Santa Cruz, CA 95064 USA
Curvature impacts physical properties across multiple length scales, ranging from the macroscopic scale, where the shape and size vary drastically with the curvature, to the nanoscale at interfaces and inhomogeneities in materials with structural, chemical, electronic, and magnetic short-range order. In quantum materials, where correlations, entanglement, and topology dominate, the curvature opens the path to novel characteristics and phenomena that have recently emerged and could have a dramatic impact on future fundamental and applied studies of materials. Particularly, magnetic systems hosting non-collinear and topological states and 3D magnetic nanostructures strongly benefit from treating curvature as a new design parameter to explore prospective applications in the magnetic field and stress sensing, microrobotics, and information processing and storage. This Perspective gives an overview of recent progress in synthesis, theory, and characterization studies and discusses future directions, challenges, and application potential of the harnessing curvature for 3D nanomagnetism.
机构:
Univ Vienna, Fac Math, A-1090 Vienna, AustriaUniv Vienna, Fac Math, A-1090 Vienna, Austria
Cap, A.
Gover, A. R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Auckland, Dept Math, Auckland 1142, New Zealand
Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, AustraliaUniv Vienna, Fac Math, A-1090 Vienna, Austria
Gover, A. R.
Hammerl, M.
论文数: 0引用数: 0
h-index: 0
机构:
Ernst Moritz Arndt Univ Greifswald, Dept Math & Comp Sci, D-17487 Greifswald, GermanyUniv Vienna, Fac Math, A-1090 Vienna, Austria