Magnetism in curved geometries

被引:31
|
作者
Streubel, Robert [1 ,2 ,3 ]
Tsymbal, Evgeny Y. [1 ,2 ]
Fischer, Peter [3 ,4 ]
机构
[1] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[2] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] UC Santa Cruz, Phys Dept, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
DZYALOSHINSKII-MORIYA INTERACTION; REAL-SPACE OBSERVATION; RAY CIRCULAR-DICHROISM; TO-CHARGE CONVERSION; DOMAIN-WALL MOTION; ROOM-TEMPERATURE; SKYRMION LATTICE; SPIN TEXTURE; THIN-FILMS; DYNAMICS;
D O I
10.1063/5.0054025
中图分类号
O59 [应用物理学];
学科分类号
摘要
Curvature impacts physical properties across multiple length scales, ranging from the macroscopic scale, where the shape and size vary drastically with the curvature, to the nanoscale at interfaces and inhomogeneities in materials with structural, chemical, electronic, and magnetic short-range order. In quantum materials, where correlations, entanglement, and topology dominate, the curvature opens the path to novel characteristics and phenomena that have recently emerged and could have a dramatic impact on future fundamental and applied studies of materials. Particularly, magnetic systems hosting non-collinear and topological states and 3D magnetic nanostructures strongly benefit from treating curvature as a new design parameter to explore prospective applications in the magnetic field and stress sensing, microrobotics, and information processing and storage. This Perspective gives an overview of recent progress in synthesis, theory, and characterization studies and discusses future directions, challenges, and application potential of the harnessing curvature for 3D nanomagnetism.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Intrinsic holonomy and curved cosets of Cartan geometries
    Erickson, Jacob W.
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (02) : 446 - 474
  • [22] Magnetism in curved VSe2 monolayers
    Mi, Kexin
    Guo, Yufeng
    [J]. RSC ADVANCES, 2023, 13 (12) : 8307 - 8316
  • [23] Evolution of magnetism on a curved nano-surface
    Merkel, D. G.
    Bessas, D.
    Zolnai, Z.
    Rueffer, R.
    Chumakov, A. I.
    Paddubrouskaya, H.
    Van Haesendonck, C.
    Nagy, N.
    Toth, A. L.
    Deak, A.
    [J]. NANOSCALE, 2015, 7 (30) : 12878 - 12887
  • [24] Geometries, electronic structures, and magnetism of small BimCon clusters
    Huang, Shu-Yu
    Xie, Zun
    Ma, Qing-Min
    Liu, Ying
    Li, You-Cheng
    [J]. JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2010, 953 (1-3): : 103 - 113
  • [25] Machining of curved geometries with constant engagement tool paths
    Desai, K. A.
    Rao, P. V. M.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2016, 230 (01) : 53 - 65
  • [27] HOLONOMY REDUCTIONS OF CARTAN GEOMETRIES AND CURVED ORBIT DECOMPOSITIONS
    Cap, A.
    Gover, A. R.
    Hammerl, M.
    [J]. DUKE MATHEMATICAL JOURNAL, 2014, 163 (05) : 1035 - 1070
  • [28] Towards energy efficient milling of variable curved geometries
    Pawar, Shrikant Shankarrao
    Bera, Tufan Chandra
    Sangwan, Kuldip Singh
    [J]. JOURNAL OF MANUFACTURING PROCESSES, 2023, 94 : 497 - 511
  • [29] The exact solution of the generalized Riemann problem in the curved geometries
    Ju Hong Kim
    [J]. Korean Journal of Computational & Applied Mathematics, 2000, 7 (2) : 271 - 288
  • [30] A review on the potential applications of curved geometries in process industry
    Vashisth, Subhashini
    Kumar, Vimal
    Nigam, Krishna D. P.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (10) : 3291 - 3337