Magnetism in curved geometries

被引:31
|
作者
Streubel, Robert [1 ,2 ,3 ]
Tsymbal, Evgeny Y. [1 ,2 ]
Fischer, Peter [3 ,4 ]
机构
[1] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[2] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] UC Santa Cruz, Phys Dept, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
DZYALOSHINSKII-MORIYA INTERACTION; REAL-SPACE OBSERVATION; RAY CIRCULAR-DICHROISM; TO-CHARGE CONVERSION; DOMAIN-WALL MOTION; ROOM-TEMPERATURE; SKYRMION LATTICE; SPIN TEXTURE; THIN-FILMS; DYNAMICS;
D O I
10.1063/5.0054025
中图分类号
O59 [应用物理学];
学科分类号
摘要
Curvature impacts physical properties across multiple length scales, ranging from the macroscopic scale, where the shape and size vary drastically with the curvature, to the nanoscale at interfaces and inhomogeneities in materials with structural, chemical, electronic, and magnetic short-range order. In quantum materials, where correlations, entanglement, and topology dominate, the curvature opens the path to novel characteristics and phenomena that have recently emerged and could have a dramatic impact on future fundamental and applied studies of materials. Particularly, magnetic systems hosting non-collinear and topological states and 3D magnetic nanostructures strongly benefit from treating curvature as a new design parameter to explore prospective applications in the magnetic field and stress sensing, microrobotics, and information processing and storage. This Perspective gives an overview of recent progress in synthesis, theory, and characterization studies and discusses future directions, challenges, and application potential of the harnessing curvature for 3D nanomagnetism.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Magnetism in curved geometries
    Streubel, Robert
    Fischer, Peter
    Kronast, Florian
    Kravchuk, Volodymyr P.
    Sheka, Denis D.
    Gaididei, Yuri
    Schmidt, Oliver G.
    Makarov, Denys
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (36)
  • [2] THE WEAVING OF CURVED GEOMETRIES
    ZEGWAARD, J
    [J]. PHYSICS LETTERS B, 1993, 300 (03) : 217 - 222
  • [3] Magnetic skyrmions in curved geometries
    Liu, Yan
    Cai, Na
    Xin, Ming-Zhu
    Wang, Shuang
    [J]. RARE METALS, 2022, 41 (07) : 2184 - 2199
  • [4] Hexatic undulations in curved geometries
    Lenz, P
    Nelson, DR
    [J]. PHYSICAL REVIEW E, 2003, 67 (03):
  • [5] Magnetic skyrmions in curved geometries
    Yan Liu
    Na Cai
    Ming-Zhu Xin
    Shuang Wang
    [J]. Rare Metals, 2022, 41 (07) : 2184 - 2199
  • [6] Magnetic skyrmions in curved geometries
    Yan Liu
    Na Cai
    Ming-Zhu Xin
    Shuang Wang
    [J]. Rare Metals, 2022, 41 : 2184 - 2199
  • [7] On Delaunay refinement for curved geometries
    Lisboa, Adriano C.
    Saldanha, Rodney R.
    Mesquita, Renato C.
    Takahashi, Ricardo H. C.
    [J]. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2010, 29 (06) : 1596 - 1605
  • [8] Quantum vortices in curved geometries
    Tononi, A.
    Salasnich, L.
    Yakimenko, A.
    [J]. AVS QUANTUM SCIENCE, 2024, 6 (03):
  • [9] Conformal invariance and simulations in curved geometries
    Blöte, HWJ
    Deng, YJ
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 321 (1-2) : 59 - 70
  • [10] Electronic materials with nanoscale curved geometries
    Gentile, Paola
    Cuoco, Mario
    Volkov, Oleksii M.
    Ying, Zu-Jian
    Vera-Marun, Ivan J.
    Makarov, Denys
    Ortix, Carmine
    [J]. NATURE ELECTRONICS, 2022, 5 (09) : 551 - 563