Internal friction in martensitic carbon steels

被引:15
|
作者
Hoyos, J. J. [1 ]
Ghilarducci, A. A. [2 ]
Salva, H. R. [2 ]
Chaves, C. A. [1 ]
Velez, J. M. [1 ]
机构
[1] Univ Nacl Colombia, Grp Ciencia & Tecnol Mat, Medellin, Colombia
[2] Univ Nacl Cuyo, Ctr Atom Bariloche, Comis Nacl Energia Atom, Inst Balseiro,Consejo Nacl Invest Cient & Tecnol, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
关键词
Mechanical spectroscopy; Carbon steel; Tempering;
D O I
10.1016/j.msea.2008.09.088
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper proposes relationships between the internal friction and the microstructure of two steels containing 0.626 and 0.71 wt.% carbon. The steels were annealed at 1093 K for 5 min, quenched into water and tempered for 10 min at 423, 573 and 723 K. internal friction was measured by using a forced vibration pendulum, in a temperature range from 100 to 450 K. The internal friction spectrum is decomposed into four peaks: PI at 215 K, P2 at 235 K, P3 at 260 K and P4 at 380 K for 3 Hz. Peak P1 is attributed to the interactions between dislocations and carbon atoms. Peak P2 is related to the interaction between dislocations and carbide. Peak P3 is related to the generations of kink - pairs along edge dislocations. Peak P4 is attributed to epsilon carbide precipitation. (C) 2009 Published by Elsevier B.V.
引用
收藏
页码:347 / 350
页数:4
相关论文
共 50 条
  • [21] Martensitic Transformation in Low-Carbon Steels
    Berezin, S. K.
    Shatsov, A. A.
    Bykova, P. O.
    Larinin, D. M.
    METAL SCIENCE AND HEAT TREATMENT, 2017, 59 (7-8) : 479 - 485
  • [22] Martensitic Transformation in Low-Carbon Steels
    S. K. Berezin
    A. A. Shatsov
    P. O. Bykova
    D. M. Larinin
    Metal Science and Heat Treatment, 2017, 59 : 479 - 485
  • [23] Enhancement of the strength and ductility of martensitic steels by carbon
    Zhang, Ke
    Liu, Ping
    Li, Wei
    Ma, Fengcang
    Guo, Zhenghong
    Rong, Yonghua
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 716 : 87 - 91
  • [24] OPTIMUM CARBON CONTENT FOR TEMPERED MARTENSITIC STEELS
    LUBAHN, JD
    CHU, HP
    JOURNAL OF BASIC ENGINEERING, 1968, 90 (01): : 1 - &
  • [25] A STUDY OF PHASE-TRANSFORMATIONS IN HIGH-NITROGEN MARTENSITIC AND AUSTENITIC STEELS BY CALORIMETRY AND INTERNAL-FRICTION METHODS
    LEVIN, VP
    PROSKURIN, VB
    STEPANOV, MS
    RUSSIAN METALLURGY, 1993, (06): : 52 - 56
  • [26] Internal friction in austenitic stainless steels with copper
    Simoes, Mauricio Silva
    Resende de Castro, Ana Luiza
    Andrade, Margareth Spangler
    REM-REVISTA ESCOLA DE MINAS, 2010, 63 (01) : 51 - 55
  • [27] INTERNAL-FRICTION IN STAINLESS MARAGING STEELS
    GRACHEV, SV
    CHERVINSKII, VF
    ZVIGINTSEV, NV
    BITYUKOV, SM
    STEEL IN THE USSR, 1975, 5 (08): : 465 - 467
  • [28] Acoustic emission and internal friction of austenitic steels
    Golub, TV
    Moklyak, SV
    Prokopenko, GI
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2001, 23 (04): : 533 - 549
  • [29] INTERNAL FRICTION STUDY OF DESTABILIZATION OF AUSTENITIC STEELS
    DELORME, JF
    ROBIN, M
    GOBIN, P
    MEMOIRES SCIENTIFIQUES DE LA REVUE DE METALLURGIE, 1969, 66 (02): : 125 - &
  • [30] Internal Friction Behavior Associated with Martensitic Decomposition in Low-carbon Dual-phase Steel
    Zhang, Jinfeng
    Wu, Xiaochun
    Min, Na
    Zuo, Shungui
    Jin, Mingjiang
    ISIJ INTERNATIONAL, 2019, 59 (07) : 1369 - 1374