Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations

被引:29
|
作者
Barbu, Viorel [1 ]
Roeckner, Michael [2 ,3 ]
机构
[1] Romanian Acad, Octav Mayer Inst Math, Iasi, Romania
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
关键词
Fokker-Planck equation; m-accretive; Measure as initial data; McKean-Vlasov stochastic differential equation;
D O I
10.1016/j.jfa.2021.108926
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One proves the existence and uniqueness of a generalized (mild) solution for the nonlinear Fokker-Planck equation (FPE) u(t) - Delta(beta(u)) + div(D(x)b(u)u) = 0, t >= 0, x is an element of R-d, d not equal 2, u(0, .) = u(0), in R-d, where u(0) is an element of L-1 (R-d ), beta is an element of C-2 (R) is a nondecreasing function, b is an element of C-1, bounded, b >= 0, D is an element of L-infinity (R-d; R-d) with div D is an element of (L-2+L infinity)(R-d), and (div D)(-) is an element of L-infinity (R-d), beta strictly increasing, if b is not constant. Moreover, t -> u(t, u(0)) is a semigroup of contractions in L-1 (R-d), which leaves invariant the set of probability density functions in R-d. If div D >= 0, beta'(r) >= a vertical bar r vertical bar(alpha-)(1) and vertical bar beta(r)vertical bar <= Cr-alpha, alpha >= 1, d >= 3, then vertical bar u(t)vertical bar L-infinity <= Ct(-d/d+(alpha-1)d) vertical bar u(0)vertical bar(2/2+(m-1d)), t > 0, and if D is an element of L-2 (R-d;R-d) the existence extends to initial data u(0) in the space M-b of bounded measures in R-d. As a consequence for arbitrary initial laws, we obtain weak solutions to a class of McKean-Vlasov SDEs with coefficients which have singular dependence on the time marginal laws. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Linearization of nonlinear Fokker-Planck equations and applications
    Ren, Panpan
    Roeckner, Michael
    Wang, Feng-Yu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 322 : 1 - 37
  • [22] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S.
    Plastino, A.R.
    Plastino, A.
    Physica A: Statistical Mechanics and its Applications, 1998, 259 (1-2): : 183 - 192
  • [23] Short-time correlations of many-body systems described by nonlinear Fokker-Planck equations and Vlasov-Fokker-Planck equations
    Frank, TD
    PHYSICS LETTERS A, 2005, 337 (03) : 224 - 234
  • [24] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S
    Plastino, AR
    Plastino, A
    PHYSICA A, 1998, 259 (1-2): : 183 - 192
  • [25] Microscopic dynamics of nonlinear Fokker-Planck equations
    Santos, Leonardo
    PHYSICAL REVIEW E, 2021, 103 (03)
  • [26] Entropy production and nonlinear Fokker-Planck equations
    Casas, G. A.
    Nobre, F. D.
    Curado, E. M. F.
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [27] Autocorrelation functions of nonlinear Fokker-Planck equations
    Frank, TD
    EUROPEAN PHYSICAL JOURNAL B, 2004, 37 (02): : 139 - 142
  • [28] Autocorrelation functions of nonlinear Fokker-Planck equations
    T. D. Frank
    The European Physical Journal B - Condensed Matter and Complex Systems, 2004, 37 : 139 - 142
  • [29] Towards Nonlinear Quantum Fokker-Planck Equations
    Roumen Tsekov
    International Journal of Theoretical Physics, 2009, 48 : 1431 - 1435
  • [30] Asymptotic controllability of nonlinear Fokker-Planck equations
    Barbu, Viorel
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (09):