A multiple surrogate assisted multi/many-objective multi-fidelity evolutionary algorithm

被引:13
|
作者
Habib, Ahsanul [1 ]
Singh, Hemant K. [1 ]
Ray, Tapabrata [1 ]
机构
[1] UNSW, SEIT, Canberra, ACT, Australia
关键词
Multi-fidelity; Multi-objective; Metamodels; Reference directions; Decomposition; OPTIMIZATION; DESIGN; APPROXIMATION; SIMULATIONS; PERFORMANCE;
D O I
10.1016/j.ins.2019.06.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Engineering design commonly involves optimization of multiple conflicting performance objectives. During the optimization process, the performance of each candidate design/solution is evaluated using a model which may be empirical, numerical, experimental, etc., among other forms. The accuracy of the underlying model in representing the real-world behavior is referred to as fidelity. A low-fidelity model may be quick to evaluate but not very accurate; whereas a high-fidelity model may be computationally expensive to evaluate but provides an accurate estimate of the true performance. The paradigm of utilizing the low and high-fidelity models' information to identify the high-fidelity optimal solution(s) is known as multi fidelity optimization. This study delves into multi-fidelity optimization for problems which contain multiple objectives and where iterative solvers such as finite element analysis, computational fluid dynamics, etc. are used for performance evaluation. By stopping the solver at various stages before convergence, lower-fidelity performance estimates can be obtained at reduced computational cost. Most of the existing multi-fidelity methods can only deal with two fidelities (high and low) and a single objective. To overcome this research gap, we present a novel multi-objective evolutionary algorithm that can deal with multiple (arbitrary) number of fidelities by effectively utilizing pre-converged low-fidelity information. The proposed algorithm uses multiple surrogate models to capture the underlying function(s) with enhanced precision. A decomposition-based scheme is deployed for improved scalability in higher number of objectives. A classifier assisted pre-selection method is used to screen potential non-dominated solutions for efficient use of the computational budget. Additionally, a set of multi-fidelity, multi/many objective benchmark problems with different Pareto front types is also introduced to aid a systematic benchmarking. Numerical experiments are presented to highlight the efficacy of the proposed approach. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:537 / 557
页数:21
相关论文
共 50 条
  • [31] A dimensionality reduction assisted evolutionary algorithm for high-dimensional expensive multi/many-objective optimization
    Yan, Zeyuan
    Zhou, Yuren
    Zheng, Wei
    Su, Chupeng
    Wu, Weigang
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 91
  • [32] An improved bagging ensemble surrogate-assisted evolutionary algorithm for expensive many-objective optimization
    Gu, Qinghua
    Zhang, Xiaoyue
    Chen, Lu
    Xiong, Naixue
    APPLIED INTELLIGENCE, 2022, 52 (06) : 5949 - 5965
  • [33] On Constraint Handling in Surrogate-Assisted Evolutionary Many-Objective Optimization
    Chugh, Tinkle
    Sindhya, Karthik
    Miettinen, Kaisa
    Hakanen, Jussi
    Jin, Yaochu
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV, 2016, 9921 : 214 - 224
  • [34] A Kriging-assisted multi-stage evolutionary algorithm for expensive many-objective optimization problems
    Gu, Qinghua
    Wang, Xueqing
    Wang, Dan
    Liu, Di
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2024, 67 (04)
  • [35] An Evolutionary Algorithm for Multi and Many-Objective Optimization With Adaptive Mating and Environmental Selection
    Palakonda, Vikas
    Mallipeddi, Rammohan
    IEEE ACCESS, 2020, 8 (08) : 82781 - 82796
  • [36] A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization
    Jiaxin Chen
    Jinliang Ding
    Kay Chen Tan
    Qingda Chen
    Memetic Computing, 2021, 13 : 413 - 432
  • [37] A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization
    Chen, Jiaxin
    Ding, Jinliang
    Tan, Kay Chen
    Chen, Qingda
    MEMETIC COMPUTING, 2021, 13 (03) : 413 - 432
  • [38] A two-stage adaptive multi-fidelity surrogate model-assisted multi-objective genetic algorithm for computationally expensive problems
    Qi Zhou
    Jinhong Wu
    Tao Xue
    Peng Jin
    Engineering with Computers, 2021, 37 : 623 - 639
  • [39] A two-stage adaptive multi-fidelity surrogate model-assisted multi-objective genetic algorithm for computationally expensive problems
    Zhou, Qi
    Wu, Jinhong
    Xue, Tao
    Jin, Peng
    ENGINEERING WITH COMPUTERS, 2021, 37 (01) : 623 - 639
  • [40] Hyperplane Assisted Evolutionary Algorithm for Many-Objective Optimization Problems
    Chen, Huangke
    Tian, Ye
    Pedrycz, Witold
    Wu, Guohua
    Wang, Rui
    Wang, Ling
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3367 - 3380